UCP-Net: Unstructured Contour Points for Instance Segmentation
- URL: http://arxiv.org/abs/2109.07592v1
- Date: Wed, 15 Sep 2021 22:03:37 GMT
- Title: UCP-Net: Unstructured Contour Points for Instance Segmentation
- Authors: Camille Dupont, Yanis Ouakrim and Quoc Cuong Pham
- Abstract summary: We propose a novel approach to interactive segmentation based on unconstrained contour clicks for initial segmentation and segmentation refinement.
Our method is class-agnostic and produces accurate segmentation masks (IoU > 85%) for a lower number of user interactions than state-of-the-art methods on popular segmentation datasets.
- Score: 2.105564340986074
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The goal of interactive segmentation is to assist users in producing
segmentation masks as fast and as accurately as possible. Interactions have to
be simple and intuitive and the number of interactions required to produce a
satisfactory segmentation mask should be as low as possible. In this paper, we
propose a novel approach to interactive segmentation based on unconstrained
contour clicks for initial segmentation and segmentation refinement. Our method
is class-agnostic and produces accurate segmentation masks (IoU > 85%) for a
lower number of user interactions than state-of-the-art methods on popular
segmentation datasets (COCO MVal, SBD and Berkeley).
Related papers
- Variance-insensitive and Target-preserving Mask Refinement for
Interactive Image Segmentation [68.16510297109872]
Point-based interactive image segmentation can ease the burden of mask annotation in applications such as semantic segmentation and image editing.
We introduce a novel method, Variance-Insensitive and Target-Preserving Mask Refinement to enhance segmentation quality with fewer user inputs.
Experiments on GrabCut, Berkeley, SBD, and DAVIS datasets demonstrate our method's state-of-the-art performance in interactive image segmentation.
arXiv Detail & Related papers (2023-12-22T02:31:31Z) - Synthetic Instance Segmentation from Semantic Image Segmentation Masks [15.477053085267404]
We propose a novel paradigm called Synthetic Instance (SISeg)
SISeg instance segmentation results by leveraging image masks generated by existing semantic segmentation models.
In other words, the proposed model does not need extra manpower or higher computational expenses.
arXiv Detail & Related papers (2023-08-02T05:13:02Z) - DynaMITe: Dynamic Query Bootstrapping for Multi-object Interactive
Segmentation Transformer [58.95404214273222]
Most state-of-the-art instance segmentation methods rely on large amounts of pixel-precise ground-truth for training.
We introduce a more efficient approach, called DynaMITe, in which we represent user interactions as-temporal queries.
Our architecture also alleviates any need to re-compute image features during refinement, and requires fewer interactions for segmenting multiple instances in a single image.
arXiv Detail & Related papers (2023-04-13T16:57:02Z) - Exploring Cycle Consistency Learning in Interactive Volume Segmentation [39.000842538436714]
We interactively approach medical volume segmentation via two decoupled modules: interaction-to-segmentation and segmentation propagation.
We propose a simple yet effective cycle consistency loss that regularizes an intermediate segmentation by referencing the accurate segmentation in the starting slice.
With cycle consistency training, the propagation network is better regularized than in standard forward-only training approaches.
arXiv Detail & Related papers (2023-03-11T20:25:05Z) - Temporal Segment Transformer for Action Segmentation [54.25103250496069]
We propose an attention based approach which we call textittemporal segment transformer, for joint segment relation modeling and denoising.
The main idea is to denoise segment representations using attention between segment and frame representations, and also use inter-segment attention to capture temporal correlations between segments.
We show that this novel architecture achieves state-of-the-art accuracy on the popular 50Salads, GTEA and Breakfast benchmarks.
arXiv Detail & Related papers (2023-02-25T13:05:57Z) - Contour-based Interactive Segmentation [4.164728134421114]
We consider a natural form of user interaction as a loose contour, and introduce a contour-based interactive segmentation method.
We demonstrate that a single contour provides the same accuracy as multiple clicks, thus reducing the required amount of user interactions.
arXiv Detail & Related papers (2023-02-13T13:35:26Z) - Masked Supervised Learning for Semantic Segmentation [5.177947445379688]
Masked Supervised Learning (MaskSup) is an effective single-stage learning paradigm that models both short- and long-range context.
We show that the proposed method is computationally efficient, yielding an improved performance by 10% on the mean intersection-over-union (mIoU)
arXiv Detail & Related papers (2022-10-03T13:30:19Z) - SOLO: A Simple Framework for Instance Segmentation [84.00519148562606]
"instance categories" assigns categories to each pixel within an instance according to the instance's location.
"SOLO" is a simple, direct, and fast framework for instance segmentation with strong performance.
Our approach achieves state-of-the-art results for instance segmentation in terms of both speed and accuracy.
arXiv Detail & Related papers (2021-06-30T09:56:54Z) - Learning Class-Agnostic Pseudo Mask Generation for Box-Supervised
Semantic Segmentation [156.9155100983315]
We seek for a more accurate learning-based class-agnostic pseudo mask generator tailored to box-supervised semantic segmentation.
Our method can further close the performance gap between box-supervised and fully-supervised models.
arXiv Detail & Related papers (2021-03-09T14:54:54Z) - Unifying Instance and Panoptic Segmentation with Dynamic Rank-1
Convolutions [109.2706837177222]
DR1Mask is the first panoptic segmentation framework that exploits a shared feature map for both instance and semantic segmentation.
As a byproduct, DR1Mask is 10% faster and 1 point in mAP more accurate than previous state-of-the-art instance segmentation network BlendMask.
arXiv Detail & Related papers (2020-11-19T12:42:10Z) - Multi-Stage Fusion for One-Click Segmentation [20.00726292545008]
We propose a new multi-stage guidance framework for interactive segmentation.
Our proposed framework has a negligible increase in parameter count compared to early-fusion frameworks.
arXiv Detail & Related papers (2020-10-19T17:07:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.