Neural Architecture Search in operational context: a remote sensing
case-study
- URL: http://arxiv.org/abs/2109.08028v1
- Date: Wed, 15 Sep 2021 08:18:12 GMT
- Title: Neural Architecture Search in operational context: a remote sensing
case-study
- Authors: Anthony Cazasnoves, Pierre-Antoine Ganaye, K\'evin Sanchis, Tugdual
Ceillier
- Abstract summary: Neural Architecture Search (NAS) is a framework introduced to mitigate risks by jointly optimizing the network architectures and its weights.
We aim to evaluate its ability to tackle a challenging operational task: semantic segmentation of objects of interest in satellite imagery.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning has become in recent years a cornerstone tool fueling key
innovations in the industry, such as autonomous driving. To attain good
performances, the neural network architecture used for a given application must
be chosen with care. These architectures are often handcrafted and therefore
prone to human biases and sub-optimal selection. Neural Architecture Search
(NAS) is a framework introduced to mitigate such risks by jointly optimizing
the network architectures and its weights. Albeit its novelty, it was applied
on complex tasks with significant results - e.g. semantic image segmentation.
In this technical paper, we aim to evaluate its ability to tackle a challenging
operational task: semantic segmentation of objects of interest in satellite
imagery. Designing a NAS framework is not trivial and has strong dependencies
to hardware constraints. We therefore motivate our NAS approach selection and
provide corresponding implementation details. We also present novel ideas to
carry out other such use-case studies.
Related papers
- NASiam: Efficient Representation Learning using Neural Architecture
Search for Siamese Networks [76.8112416450677]
Siamese networks are one of the most trending methods to achieve self-supervised visual representation learning (SSL)
NASiam is a novel approach that uses for the first time differentiable NAS to improve the multilayer perceptron projector and predictor (encoder/predictor pair)
NASiam reaches competitive performance in both small-scale (i.e., CIFAR-10/CIFAR-100) and large-scale (i.e., ImageNet) image classification datasets while costing only a few GPU hours.
arXiv Detail & Related papers (2023-01-31T19:48:37Z) - Surrogate-assisted Multi-objective Neural Architecture Search for
Real-time Semantic Segmentation [11.866947846619064]
neural architecture search (NAS) has emerged as a promising avenue toward automating the design of architectures.
We propose a surrogate-assisted multi-objective method to address the challenges of applying NAS to semantic segmentation.
Our method can identify architectures significantly outperforming existing state-of-the-art architectures designed both manually by human experts and automatically by other NAS methods.
arXiv Detail & Related papers (2022-08-14T10:18:51Z) - SuperNet in Neural Architecture Search: A Taxonomic Survey [14.037182039950505]
This survey focuses on the supernet optimization that builds a neural network that assembles all the architectures as its sub models by using weight sharing.
We aim to accomplish that by proposing them as solutions to the common challenges found in the literature: data-side optimization, poor rank correlation alleviation, and transferable NAS for a number of deployment scenarios.
arXiv Detail & Related papers (2022-04-08T08:29:52Z) - Neural Architecture Search for Speech Emotion Recognition [72.1966266171951]
We propose to apply neural architecture search (NAS) techniques to automatically configure the SER models.
We show that NAS can improve SER performance (54.89% to 56.28%) while maintaining model parameter sizes.
arXiv Detail & Related papers (2022-03-31T10:16:10Z) - Neural Architecture Search for Dense Prediction Tasks in Computer Vision [74.9839082859151]
Deep learning has led to a rising demand for neural network architecture engineering.
neural architecture search (NAS) aims at automatically designing neural network architectures in a data-driven manner rather than manually.
NAS has become applicable to a much wider range of problems in computer vision.
arXiv Detail & Related papers (2022-02-15T08:06:50Z) - ISyNet: Convolutional Neural Networks design for AI accelerator [0.0]
Current state-of-the-art architectures are found with neural architecture search (NAS) taking model complexity into account.
We propose a measure of hardware efficiency of neural architecture search space - matrix efficiency measure (MEM); a search space comprising of hardware-efficient operations; a latency-aware scaling method.
We show the advantage of the designed architectures for the NPU devices on ImageNet and the generalization ability for the downstream classification and detection tasks.
arXiv Detail & Related papers (2021-09-04T20:57:05Z) - Pretraining Neural Architecture Search Controllers with Locality-based
Self-Supervised Learning [0.0]
We propose a pretraining scheme that can be applied to controller-based NAS.
Our method, locality-based self-supervised classification task, leverages the structural similarity of network architectures to obtain good architecture representations.
arXiv Detail & Related papers (2021-03-15T06:30:36Z) - MS-RANAS: Multi-Scale Resource-Aware Neural Architecture Search [94.80212602202518]
We propose Multi-Scale Resource-Aware Neural Architecture Search (MS-RANAS)
We employ a one-shot architecture search approach in order to obtain a reduced search cost.
We achieve state-of-the-art results in terms of accuracy-speed trade-off.
arXiv Detail & Related papers (2020-09-29T11:56:01Z) - A Comprehensive Survey of Neural Architecture Search: Challenges and
Solutions [48.76705090826339]
Neural Architecture Search (NAS) is a revolutionary algorithm, and the related research work is complicated and rich.
We provide a new perspective: beginning with an overview of the characteristics of the earliest NAS algorithms, summarizing the problems in these early NAS algorithms.
Besides, we conduct a detailed and comprehensive analysis, comparison, and summary of these works.
arXiv Detail & Related papers (2020-06-01T13:08:03Z) - Scalable NAS with Factorizable Architectural Parameters [102.51428615447703]
Neural Architecture Search (NAS) is an emerging topic in machine learning and computer vision.
This paper presents a scalable algorithm by factorizing a large set of candidate operators into smaller subspaces.
With a small increase in search costs and no extra costs in re-training, we find interesting architectures that were not explored before.
arXiv Detail & Related papers (2019-12-31T10:26:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.