Assessments of model-form uncertainty using Gaussian stochastic weight
averaging for fluid-flow regression
- URL: http://arxiv.org/abs/2109.08248v1
- Date: Thu, 16 Sep 2021 23:13:26 GMT
- Title: Assessments of model-form uncertainty using Gaussian stochastic weight
averaging for fluid-flow regression
- Authors: Masaki Morimoto, Kai Fukami, Romit Maulik, Ricardo Vinuesa, Koji
Fukagata
- Abstract summary: We use Gaussian weight averaging (SWAG) to assess the model-form uncertainty associated with neural-network-based function approximation relevant to fluid flows.
SWAG approximates a posterior Gaussian distribution of each weight, given training data, and a constant learning rate.
We demonstrate the applicability of the method for two types of neural networks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We use Gaussian stochastic weight averaging (SWAG) to assess the model-form
uncertainty associated with neural-network-based function approximation
relevant to fluid flows. SWAG approximates a posterior Gaussian distribution of
each weight, given training data, and a constant learning rate. Having access
to this distribution, it is able to create multiple models with various
combinations of sampled weights, which can be used to obtain ensemble
predictions. The average of such an ensemble can be regarded as the `mean
estimation', whereas its standard deviation can be used to construct
`confidence intervals', which enable us to perform uncertainty quantification
(UQ) with regard to the training process of neural networks. We utilize
representative neural-network-based function approximation tasks for the
following cases: (i) a two-dimensional circular-cylinder wake; (ii) the DayMET
dataset (maximum daily temperature in North America); (iii) a three-dimensional
square-cylinder wake; and (iv) urban flow, to assess the generalizability of
the present idea for a wide range of complex datasets. SWAG-based UQ can be
applied regardless of the network architecture, and therefore, we demonstrate
the applicability of the method for two types of neural networks: (i) global
field reconstruction from sparse sensors by combining convolutional neural
network (CNN) and multi-layer perceptron (MLP); and (ii) far-field state
estimation from sectional data with two-dimensional CNN. We find that SWAG can
obtain physically-interpretable confidence-interval estimates from the
perspective of model-form uncertainty. This capability supports its use for a
wide range of problems in science and engineering.
Related papers
- Scalable Bayesian Inference in the Era of Deep Learning: From Gaussian Processes to Deep Neural Networks [0.5827521884806072]
Large neural networks trained on large datasets have become the dominant paradigm in machine learning.
This thesis develops scalable methods to equip neural networks with model uncertainty.
arXiv Detail & Related papers (2024-04-29T23:38:58Z) - On the Convergence of Locally Adaptive and Scalable Diffusion-Based Sampling Methods for Deep Bayesian Neural Network Posteriors [2.3265565167163906]
Bayesian neural networks are a promising approach for modeling uncertainties in deep neural networks.
generating samples from the posterior distribution of neural networks is a major challenge.
One advance in that direction would be the incorporation of adaptive step sizes into Monte Carlo Markov chain sampling algorithms.
In this paper, we demonstrate that these methods can have a substantial bias in the distribution they sample, even in the limit of vanishing step sizes and at full batch size.
arXiv Detail & Related papers (2024-03-13T15:21:14Z) - Assessing Neural Network Representations During Training Using
Noise-Resilient Diffusion Spectral Entropy [55.014926694758195]
Entropy and mutual information in neural networks provide rich information on the learning process.
We leverage data geometry to access the underlying manifold and reliably compute these information-theoretic measures.
We show that they form noise-resistant measures of intrinsic dimensionality and relationship strength in high-dimensional simulated data.
arXiv Detail & Related papers (2023-12-04T01:32:42Z) - Evaluation of machine learning architectures on the quantification of
epistemic and aleatoric uncertainties in complex dynamical systems [0.0]
Uncertainty Quantification (UQ) is a self assessed estimate of the model error.
We examine several machine learning techniques, including both Gaussian processes and a family UQ-augmented neural networks.
We evaluate UQ accuracy (distinct from model accuracy) using two metrics: the distribution of normalized residuals on validation data, and the distribution of estimated uncertainties.
arXiv Detail & Related papers (2023-06-27T02:35:25Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - A predictive physics-aware hybrid reduced order model for reacting flows [65.73506571113623]
A new hybrid predictive Reduced Order Model (ROM) is proposed to solve reacting flow problems.
The number of degrees of freedom is reduced from thousands of temporal points to a few POD modes with their corresponding temporal coefficients.
Two different deep learning architectures have been tested to predict the temporal coefficients.
arXiv Detail & Related papers (2023-01-24T08:39:20Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Multi-Sample Online Learning for Spiking Neural Networks based on
Generalized Expectation Maximization [42.125394498649015]
Spiking Neural Networks (SNNs) capture some of the efficiency of biological brains by processing through binary neural dynamic activations.
This paper proposes to leverage multiple compartments that sample independent spiking signals while sharing synaptic weights.
The key idea is to use these signals to obtain more accurate statistical estimates of the log-likelihood training criterion, as well as of its gradient.
arXiv Detail & Related papers (2021-02-05T16:39:42Z) - Multi-fidelity Bayesian Neural Networks: Algorithms and Applications [0.0]
We propose a new class of Bayesian neural networks (BNNs) that can be trained using noisy data of variable fidelity.
We apply them to learn function approximations as well as to solve inverse problems based on partial differential equations (PDEs)
arXiv Detail & Related papers (2020-12-19T02:03:53Z) - Model Fusion via Optimal Transport [64.13185244219353]
We present a layer-wise model fusion algorithm for neural networks.
We show that this can successfully yield "one-shot" knowledge transfer between neural networks trained on heterogeneous non-i.i.d. data.
arXiv Detail & Related papers (2019-10-12T22:07:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.