Transformer-Unet: Raw Image Processing with Unet
- URL: http://arxiv.org/abs/2109.08417v1
- Date: Fri, 17 Sep 2021 09:03:10 GMT
- Title: Transformer-Unet: Raw Image Processing with Unet
- Authors: Youyang Sha, Yonghong Zhang, Xuquan Ji and Lei Hu
- Abstract summary: We propose Transformer-Unet by adding transformer modules in raw images instead of feature maps in Unet.
We form an end-to-end network and gain segmentation results better than many previous Unet based algorithms in our experiment.
- Score: 4.7944896477309555
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Medical image segmentation have drawn massive attention as it is important in
biomedical image analysis. Good segmentation results can assist doctors with
their judgement and further improve patients' experience. Among many available
pipelines in medical image analysis, Unet is one of the most popular neural
networks as it keeps raw features by adding concatenation between encoder and
decoder, which makes it still widely used in industrial field. In the mean
time, as a popular model which dominates natural language process tasks,
transformer is now introduced to computer vision tasks and have seen promising
results in object detection, image classification and semantic segmentation
tasks. Therefore, the combination of transformer and Unet is supposed to be
more efficient than both methods working individually. In this article, we
propose Transformer-Unet by adding transformer modules in raw images instead of
feature maps in Unet and test our network in CT82 datasets for Pancreas
segmentation accordingly. We form an end-to-end network and gain segmentation
results better than many previous Unet based algorithms in our experiment. We
demonstrate our network and show our experimental results in this paper
accordingly.
Related papers
- SeUNet-Trans: A Simple yet Effective UNet-Transformer Model for Medical
Image Segmentation [0.0]
We propose a simple yet effective UNet-Transformer (seUNet-Trans) model for medical image segmentation.
In our approach, the UNet model is designed as a feature extractor to generate multiple feature maps from the input images.
By leveraging the UNet architecture and the self-attention mechanism, our model not only retains the preservation of both local and global context information but also is capable of capturing long-range dependencies between input elements.
arXiv Detail & Related papers (2023-10-16T01:13:38Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - ConvTransSeg: A Multi-resolution Convolution-Transformer Network for
Medical Image Segmentation [14.485482467748113]
We propose a hybrid encoder-decoder segmentation model (ConvTransSeg)
It consists of a multi-layer CNN as the encoder for feature learning and the corresponding multi-level Transformer as the decoder for segmentation prediction.
Our method achieves the best performance in terms of Dice coefficient and average symmetric surface distance measures with low model complexity and memory consumption.
arXiv Detail & Related papers (2022-10-13T14:59:23Z) - HistoSeg : Quick attention with multi-loss function for multi-structure
segmentation in digital histology images [0.696194614504832]
Medical image segmentation assists in computer-aided diagnosis, surgeries, and treatment.
We proposed an generalization-Decoder Network, Quick Attention Module and a Multi Loss Function.
We evaluate the capability of our proposed network on two publicly available datasets for medical image segmentation MoNuSeg and GlaS.
arXiv Detail & Related papers (2022-09-01T21:10:00Z) - Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation [63.46694853953092]
Swin-Unet is an Unet-like pure Transformer for medical image segmentation.
tokenized image patches are fed into the Transformer-based U-shaped decoder-Decoder architecture.
arXiv Detail & Related papers (2021-05-12T09:30:26Z) - Pyramid Medical Transformer for Medical Image Segmentation [8.157373686645318]
We develop a novel method to integrate multi-scale attention and CNN feature extraction using a pyramidal network architecture, namely Pyramid Medical Transformer (PMTrans)
Experimental results on two medical image datasets, gland segmentation and MoNuSeg datasets, showed that PMTrans outperformed the latest CNN-based and transformer-based models for medical image segmentation.
arXiv Detail & Related papers (2021-04-29T23:57:20Z) - Deep ensembles based on Stochastic Activation Selection for Polyp
Segmentation [82.61182037130406]
This work deals with medical image segmentation and in particular with accurate polyp detection and segmentation during colonoscopy examinations.
Basic architecture in image segmentation consists of an encoder and a decoder.
We compare some variant of the DeepLab architecture obtained by varying the decoder backbone.
arXiv Detail & Related papers (2021-04-02T02:07:37Z) - TransMed: Transformers Advance Multi-modal Medical Image Classification [4.500880052705654]
convolutional neural networks (CNN) have shown very competitive performance in medical image analysis tasks.
Transformers have been applied to computer vision and achieved remarkable success in large-scale datasets.
TransMed combines the advantages of CNN and transformer to efficiently extract low-level features of images.
arXiv Detail & Related papers (2021-03-10T08:57:53Z) - CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image
Segmentation [95.51455777713092]
Convolutional neural networks (CNNs) have been the de facto standard for nowadays 3D medical image segmentation.
We propose a novel framework that efficiently bridges a bf Convolutional neural network and a bf Transformer bf (CoTr) for accurate 3D medical image segmentation.
arXiv Detail & Related papers (2021-03-04T13:34:22Z) - Medical Transformer: Gated Axial-Attention for Medical Image
Segmentation [73.98974074534497]
We study the feasibility of using Transformer-based network architectures for medical image segmentation tasks.
We propose a Gated Axial-Attention model which extends the existing architectures by introducing an additional control mechanism in the self-attention module.
To train the model effectively on medical images, we propose a Local-Global training strategy (LoGo) which further improves the performance.
arXiv Detail & Related papers (2021-02-21T18:35:14Z) - TransUNet: Transformers Make Strong Encoders for Medical Image
Segmentation [78.01570371790669]
Medical image segmentation is an essential prerequisite for developing healthcare systems.
On various medical image segmentation tasks, the u-shaped architecture, also known as U-Net, has become the de-facto standard.
We propose TransUNet, which merits both Transformers and U-Net, as a strong alternative for medical image segmentation.
arXiv Detail & Related papers (2021-02-08T16:10:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.