Using gradient-based algorithms to determine ground state energies on a
quantum computer
- URL: http://arxiv.org/abs/2109.08420v1
- Date: Fri, 17 Sep 2021 09:12:43 GMT
- Title: Using gradient-based algorithms to determine ground state energies on a
quantum computer
- Authors: Tomislav Piskor, Florian G. Eich, Jan-Michael Reiner, Sebastian
Zanker, Nicolas Vogt, Michael Marthaler, and Frank Wilhelm-Mauch
- Abstract summary: Variational algorithms are promising candidates to be implemented on near-term quantum computers.
We study how different methods for obtaining the gradient, specifically the finite-difference and the parameter-shift rule, are affected by shot noise and noise of the quantum computer.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Variational algorithms are promising candidates to be implemented on
near-term quantum computers. The variational quantum eigensolver (VQE) is a
prominent example, where a parametrized trial state of the quantum mechanical
wave function is optimized to obtain the ground state energy. In our work, we
investigate the variational Hamiltonian Ansatz (VHA), where the trial state is
given by a non-interacting reference state modified by unitary rotations using
generators that are part of the Hamiltonian describing the system. The lowest
energy is obtained by optimizing the angles of those unitary rotations. A
standard procedure to optimize the variational parameters is to use
gradient-based algorithms. However, shot noise and the intrinsic noise of the
quantum device affect the evaluation of the required gradients. We studied how
different methods for obtaining the gradient, specifically the
finite-difference and the parameter-shift rule, are affected by shot noise and
noise of the quantum computer. To this end, we simulated a simple quantum
circuit, as well as the 2-site and 6-site Hubbard model.
Related papers
- Benchmarking Variational Quantum Eigensolvers for Entanglement Detection in Many-Body Hamiltonian Ground States [37.69303106863453]
Variational quantum algorithms (VQAs) have emerged in recent years as a promise to obtain quantum advantage.
We use a specific class of VQA named variational quantum eigensolvers (VQEs) to benchmark them at entanglement witnessing and entangled ground state detection.
Quantum circuits whose structure is inspired by the Hamiltonian interactions presented better results on cost function estimation than problem-agnostic circuits.
arXiv Detail & Related papers (2024-07-05T12:06:40Z) - A quantum implementation of high-order power method for estimating geometric entanglement of pure states [39.58317527488534]
This work presents a quantum adaptation of the iterative higher-order power method for estimating the geometric measure of entanglement of multi-qubit pure states.
It is executable on current (hybrid) quantum hardware and does not depend on quantum memory.
We study the effect of noise on the algorithm using a simple theoretical model based on the standard depolarising channel.
arXiv Detail & Related papers (2024-05-29T14:40:24Z) - Solving the Lipkin model using quantum computers with two qubits only
with a hybrid quantum-classical technique based on the Generator Coordinate
Method [0.0]
We discuss the possibility of using the generator coordinate method (GCM) using hybrid quantum-classical algorithms with reduced quantum resources.
We show that, ultimately, only two qubits is enough to solve the problem regardless of the particle number.
As an alternative to this technique, we also explored how the quantum state deflation method can be adapted to the GCM problem.
arXiv Detail & Related papers (2023-12-07T21:18:27Z) - GRAPE optimization for open quantum systems with time-dependent
decoherence rates driven by coherent and incoherent controls [77.34726150561087]
The GRadient Ascent Pulse Engineering (GRAPE) method is widely used for optimization in quantum control.
We adopt GRAPE method for optimizing objective functionals for open quantum systems driven by both coherent and incoherent controls.
The efficiency of the algorithm is demonstrated through numerical simulations for the state-to-state transition problem.
arXiv Detail & Related papers (2023-07-17T13:37:18Z) - Improved iterative quantum algorithm for ground-state preparation [4.921552273745794]
We propose an improved iterative quantum algorithm to prepare the ground state of a Hamiltonian system.
Our approach has advantages including the higher success probability at each iteration, the measurement precision-independent sampling complexity, the lower gate complexity, and only quantum resources are required when the ancillary state is well prepared.
arXiv Detail & Related papers (2022-10-16T05:57:43Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - The Variational Quantum Eigensolver: a review of methods and best
practices [3.628860803653535]
The variational quantum eigensolver (or VQE) uses the variational principle to compute the ground state energy of a Hamiltonian.
This review aims to provide an overview of the progress that has been made on the different parts of the algorithm.
arXiv Detail & Related papers (2021-11-09T14:40:18Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Algorithm for initializing a generalized fermionic Gaussian state on a
quantum computer [0.0]
We present explicit expressions for the central piece of a variational method developed by Shi et al.
We derive iterative analytical expressions for the evaluation of expectation values of products of fermionic creation and subroutine operators.
We present a simple gradient-descent-based algorithm that can be used as an optimization in combination with imaginary time evolution.
arXiv Detail & Related papers (2021-05-27T10:31:45Z) - Measuring Analytic Gradients of General Quantum Evolution with the
Stochastic Parameter Shift Rule [0.0]
We study the problem of estimating the gradient of the function to be optimized directly from quantum measurements.
We derive a mathematically exact formula that provides an algorithm for estimating the gradient of any multi-qubit parametric quantum evolution.
Our algorithm continues to work, although with some approximations, even when all the available quantum gates are noisy.
arXiv Detail & Related papers (2020-05-20T18:24:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.