A Computable Piece of Uncomputable Art whose Expansion May Explain the
Universe in Software Space
- URL: http://arxiv.org/abs/2109.08523v1
- Date: Wed, 15 Sep 2021 12:44:40 GMT
- Title: A Computable Piece of Uncomputable Art whose Expansion May Explain the
Universe in Software Space
- Authors: Hector Zenil
- Abstract summary: We find an exciting area of science related to causation with an alternative, possibly best solution to the challenge of the inverse problem.
It is possible to find small models and learn to navigate a sci-fi-looking space that can advance the field of scientific discovery.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: At the intersection of what I call uncomputable art and computational
epistemology, a form of experimental philosophy, we find an exciting and
promising area of science related to causation with an alternative, possibly
best possible, solution to the challenge of the inverse problem. That is the
problem of finding the possible causes, mechanistic origins, first principles,
and generative models of a piece of data from a physical phenomenon. Here we
explain how generating and exploring software space following the framework of
Algorithmic Information Dynamics, it is possible to find small models and learn
to navigate a sci-fi-looking space that can advance the field of scientific
discovery with complementary tools to offer an opportunity to advance science
itself.
Related papers
- Spherinator and HiPSter: Representation Learning for Unbiased Knowledge Discovery from Simulations [0.0]
We describe a new, unbiased, and machine learning based approach to obtain useful scientific insights from a broad range of simulations.
Our concept is based on applying nonlinear dimensionality reduction to learn compact representations of the data in a low-dimensional space.
We present a prototype using a rotational invariant hyperspherical variational convolutional autoencoder, utilizing a power distribution in the latent space, and trained on galaxies from IllustrisTNG simulation.
arXiv Detail & Related papers (2024-06-06T07:34:58Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
Recent advances in machine learning and AI are disrupting technological innovation, product development, and society as a whole.
AI has contributed less to fundamental science in part because large data sets of high-quality data for scientific practice and model discovery are more difficult to access.
Here we explore and investigate aspects of an AI-driven, automated, closed-loop approach to scientific discovery.
arXiv Detail & Related papers (2023-07-09T21:16:56Z) - Symmetry-Informed Geometric Representation for Molecules, Proteins, and
Crystalline Materials [66.14337835284628]
We propose a platform, coined Geom3D, which enables benchmarking the effectiveness of geometric strategies.
Geom3D contains 16 advanced symmetry-informed geometric representation models and 14 geometric pretraining methods over 46 diverse datasets.
arXiv Detail & Related papers (2023-06-15T05:37:25Z) - Discovering Causal Relations and Equations from Data [23.802778299505288]
This paper reviews the concepts, methods, and relevant works on causal and equation discovery in the broad field of Physics.
We provide a taxonomy for observational causal and equation discovery, point out connections, and showcase a complete set of case studies.
Exciting times are ahead with many challenges and opportunities to improve our understanding of complex systems.
arXiv Detail & Related papers (2023-05-21T19:22:50Z) - GFlowNets for AI-Driven Scientific Discovery [74.27219800878304]
We present a new probabilistic machine learning framework called GFlowNets.
GFlowNets can be applied in the modeling, hypotheses generation and experimental design stages of the experimental science loop.
We argue that GFlowNets can become a valuable tool for AI-driven scientific discovery.
arXiv Detail & Related papers (2023-02-01T17:29:43Z) - Learning Robotic Navigation from Experience: Principles, Methods, and
Recent Results [94.60414567852536]
Real-world navigation presents a complex set of physical challenges that defies simple geometric abstractions.
Machine learning offers a promising way to go beyond geometry and conventional planning.
We present a toolkit for experiential learning of robotic navigation skills that unifies several recent approaches.
arXiv Detail & Related papers (2022-12-13T17:41:58Z) - Simulation Intelligence: Towards a New Generation of Scientific Methods [81.75565391122751]
"Nine Motifs of Simulation Intelligence" is a roadmap for the development and integration of the essential algorithms necessary for a merger of scientific computing, scientific simulation, and artificial intelligence.
We argue the motifs of simulation intelligence are interconnected and interdependent, much like the components within the layers of an operating system.
We believe coordinated efforts between motifs offers immense opportunity to accelerate scientific discovery.
arXiv Detail & Related papers (2021-12-06T18:45:31Z) - Learning from learning machines: a new generation of AI technology to
meet the needs of science [59.261050918992325]
We outline emerging opportunities and challenges to enhance the utility of AI for scientific discovery.
The distinct goals of AI for industry versus the goals of AI for science create tension between identifying patterns in data versus discovering patterns in the world from data.
arXiv Detail & Related papers (2021-11-27T00:55:21Z) - Objective discovery of dominant dynamical processes with intelligible
machine learning [0.0]
We present a formal definition in which the identification of dynamical regimes is formulated as an optimization problem.
We propose an unsupervised learning framework which eliminates the need for a priori knowledge and ad hoc definitions.
Our method is a step towards unbiased data exploration that allows serendipitous discovery within dynamical systems.
arXiv Detail & Related papers (2021-06-21T20:57:23Z) - Off-the-shelf deep learning is not enough: parsimony, Bayes and
causality [0.8602553195689513]
We discuss opportunities and roadblocks to implementation of deep learning within materials science.
We argue that deep learning and AI are now well positioned to revolutionize fields where causal links are known.
arXiv Detail & Related papers (2020-05-04T15:16:30Z) - Computer-inspired Quantum Experiments [1.2891210250935146]
In many disciplines, computer-inspired design processes, also known as inverse-design, have augmented the capability of scientists.
We will meet vastly diverse computational approaches based on topological optimization, evolutionary strategies, deep learning, reinforcement learning or automated reasoning.
arXiv Detail & Related papers (2020-02-23T18:59:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.