Towards Zero and Few-shot Knowledge-seeking Turn Detection in
Task-orientated Dialogue Systems
- URL: http://arxiv.org/abs/2109.08820v1
- Date: Sat, 18 Sep 2021 03:33:19 GMT
- Title: Towards Zero and Few-shot Knowledge-seeking Turn Detection in
Task-orientated Dialogue Systems
- Authors: Di Jin, Shuyang Gao, Seokhwan Kim, Yang Liu, Dilek Hakkani-Tur
- Abstract summary: This work focuses on identifying user requests that are out of the scope of domain APIs.
We propose a novel method, REDE, based on adaptive representation learning and density estimation.
We demonstrate REDE's competitive performance on DSTC9 data and our newly collected test set.
- Score: 40.74708947185302
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Most prior work on task-oriented dialogue systems is restricted to supporting
domain APIs. However, users may have requests that are out of the scope of
these APIs. This work focuses on identifying such user requests. Existing
methods for this task mainly rely on fine-tuning pre-trained models on large
annotated data. We propose a novel method, REDE, based on adaptive
representation learning and density estimation. REDE can be applied to
zero-shot cases, and quickly learns a high-performing detector with only a few
shots by updating less than 3K parameters. We demonstrate REDE's competitive
performance on DSTC9 data and our newly collected test set.
Related papers
- A Classification-by-Retrieval Framework for Few-Shot Anomaly Detection to Detect API Injection Attacks [9.693391036125908]
We propose a novel unsupervised few-shot anomaly detection framework composed of two main parts.
First, we train a dedicated generic language model for API based on FastText embedding.
Next, we use Approximate Nearest Neighbor search in a classification-by-retrieval approach.
arXiv Detail & Related papers (2024-05-18T10:15:31Z) - Zero-shot Retrieval: Augmenting Pre-trained Models with Search Engines [83.65380507372483]
Large pre-trained models can dramatically reduce the amount of task-specific data required to solve a problem, but they often fail to capture domain-specific nuances out of the box.
This paper shows how to leverage recent advances in NLP and multi-modal learning to augment a pre-trained model with search engine retrieval.
arXiv Detail & Related papers (2023-11-29T05:33:28Z) - MeaeQ: Mount Model Extraction Attacks with Efficient Queries [6.1106195466129485]
We study model extraction attacks in natural language processing (NLP)
We propose MeaeQ, a straightforward yet effective method to address these issues.
MeaeQ achieves higher functional similarity to the victim model than baselines while requiring fewer queries.
arXiv Detail & Related papers (2023-10-21T16:07:16Z) - Self-Prompting Large Language Models for Zero-Shot Open-Domain QA [67.08732962244301]
Open-Domain Question Answering (ODQA) aims to answer questions without explicitly providing background documents.
This task becomes notably challenging in a zero-shot setting where no data is available to train tailored retrieval-reader models.
We propose a Self-Prompting framework to explicitly utilize the massive knowledge encoded in the parameters of Large Language Models.
arXiv Detail & Related papers (2022-12-16T18:23:43Z) - ReAct: Temporal Action Detection with Relational Queries [84.76646044604055]
This work aims at advancing temporal action detection (TAD) using an encoder-decoder framework with action queries.
We first propose a relational attention mechanism in the decoder, which guides the attention among queries based on their relations.
Lastly, we propose to predict the localization quality of each action query at inference in order to distinguish high-quality queries.
arXiv Detail & Related papers (2022-07-14T17:46:37Z) - Incremental-DETR: Incremental Few-Shot Object Detection via
Self-Supervised Learning [60.64535309016623]
We propose the Incremental-DETR that does incremental few-shot object detection via fine-tuning and self-supervised learning on the DETR object detector.
To alleviate severe over-fitting with few novel class data, we first fine-tune the class-specific components of DETR with self-supervision.
We further introduce a incremental few-shot fine-tuning strategy with knowledge distillation on the class-specific components of DETR to encourage the network in detecting novel classes without catastrophic forgetting.
arXiv Detail & Related papers (2022-05-09T05:08:08Z) - Dynamic Relevance Learning for Few-Shot Object Detection [6.550840743803705]
We propose a dynamic relevance learning model, which utilizes the relationship between all support images and Region of Interest (RoI) on the query images to construct a dynamic graph convolutional network (GCN)
The proposed model achieves the best overall performance, which shows its effectiveness of learning more generalized features.
arXiv Detail & Related papers (2021-08-04T18:29:42Z) - Can I Be of Further Assistance? Using Unstructured Knowledge Access to
Improve Task-oriented Conversational Modeling [39.60614611655266]
This work focuses on responding to these beyond-API-coverage user turns by incorporating external, unstructured knowledge sources.
We introduce novel data augmentation methods for the first two steps and demonstrate that the use of information extracted from dialogue context improves the knowledge selection and end-to-end performances.
arXiv Detail & Related papers (2021-06-16T23:31:42Z) - Generalized Few-Shot Object Detection without Forgetting [17.719042946397487]
We propose a simple yet effective few-shot detector, Retentive R-CNN.
It consists of Bias-Balanced RPN to debias the pretrained RPN and Re-detector to find few-shot class objects without forgetting previous knowledge.
Our approach has demonstrated that the long desired never-forgetting learner is available in object detection.
arXiv Detail & Related papers (2021-05-20T03:25:29Z) - Few-shot Weakly-Supervised Object Detection via Directional Statistics [55.97230224399744]
We propose a probabilistic multiple instance learning approach for few-shot Common Object Localization (COL) and few-shot Weakly Supervised Object Detection (WSOD)
Our model simultaneously learns the distribution of the novel objects and localizes them via expectation-maximization steps.
Our experiments show that the proposed method, despite being simple, outperforms strong baselines in few-shot COL and WSOD, as well as large-scale WSOD tasks.
arXiv Detail & Related papers (2021-03-25T22:34:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.