Perspective-taking and Pragmatics for Generating Empathetic Responses
Focused on Emotion Causes
- URL: http://arxiv.org/abs/2109.08828v2
- Date: Tue, 21 Sep 2021 04:56:14 GMT
- Title: Perspective-taking and Pragmatics for Generating Empathetic Responses
Focused on Emotion Causes
- Authors: Hyunwoo Kim, Byeongchang Kim, Gunhee Kim
- Abstract summary: We argue that two issues must be tackled at the same time: (i) identifying which word is the cause for the other's emotion from his or her utterance and (ii) reflecting those specific words in the response generation.
Taking inspiration from social cognition, we leverage a generative estimator to infer emotion cause words from utterances with no word-level label.
- Score: 50.569762345799354
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Empathy is a complex cognitive ability based on the reasoning of others'
affective states. In order to better understand others and express stronger
empathy in dialogues, we argue that two issues must be tackled at the same
time: (i) identifying which word is the cause for the other's emotion from his
or her utterance and (ii) reflecting those specific words in the response
generation. However, previous approaches for recognizing emotion cause words in
text require sub-utterance level annotations, which can be demanding. Taking
inspiration from social cognition, we leverage a generative estimator to infer
emotion cause words from utterances with no word-level label. Also, we
introduce a novel method based on pragmatics to make dialogue models focus on
targeted words in the input during generation. Our method is applicable to any
dialogue models with no additional training on the fly. We show our approach
improves multiple best-performing dialogue agents on generating more focused
empathetic responses in terms of both automatic and human evaluation.
Related papers
- Think out Loud: Emotion Deducing Explanation in Dialogues [57.90554323226896]
We propose a new task "Emotion Deducing Explanation in Dialogues" (EDEN)
EDEN recognizes emotion and causes in an explicitly thinking way.
It can help Large Language Models (LLMs) achieve better recognition of emotions and causes.
arXiv Detail & Related papers (2024-06-07T08:58:29Z) - An Iterative Associative Memory Model for Empathetic Response Generation [22.68709119989059]
Empathetic response generation aims to comprehend the cognitive and emotional states in dialogue utterances.
We propose an Iterative Associative Memory Model (IAMM) for empathetic response generation.
arXiv Detail & Related papers (2024-02-28T00:49:06Z) - Emotion Rendering for Conversational Speech Synthesis with Heterogeneous
Graph-Based Context Modeling [50.99252242917458]
Conversational Speech Synthesis (CSS) aims to accurately express an utterance with the appropriate prosody and emotional inflection within a conversational setting.
To address the issue of data scarcity, we meticulously create emotional labels in terms of category and intensity.
Our model outperforms the baseline models in understanding and rendering emotions.
arXiv Detail & Related papers (2023-12-19T08:47:50Z) - Empathetic Response Generation via Emotion Cause Transition Graph [29.418144401849194]
Empathetic dialogue is a human-like behavior that requires the perception of both affective factors (e.g., emotion status) and cognitive factors (e.g., cause of the emotion)
We propose an emotion cause transition graph to explicitly model the natural transition of emotion causes between two adjacent turns in empathetic dialogue.
With this graph, the concept words of the emotion causes in the next turn can be predicted and used by a specifically designed concept-aware decoder to generate the empathic response.
arXiv Detail & Related papers (2023-02-23T05:51:17Z) - CAB: Empathetic Dialogue Generation with Cognition, Affection and
Behavior [8.791757758576951]
We propose a novel framework that takes a comprehensive perspective of cognition, affection and behavior to generate empathetic responses.
For cognition, we build paths between critical keywords in the dialogue by leveraging external knowledge.
For affection, we capture the emotional dependencies with dual latent variables that contain both interlocutors' emotions.
arXiv Detail & Related papers (2023-02-03T14:31:17Z) - Think Twice: A Human-like Two-stage Conversational Agent for Emotional Response Generation [16.659457455269127]
We propose a two-stage conversational agent for the generation of emotional dialogue.
First, a dialogue model trained without the emotion-annotated dialogue corpus generates a prototype response that meets the contextual semantics.
Secondly, the first-stage prototype is modified by a controllable emotion refiner with the empathy hypothesis.
arXiv Detail & Related papers (2023-01-12T10:03:56Z) - Empathetic Dialogue Generation via Sensitive Emotion Recognition and
Sensible Knowledge Selection [47.60224978460442]
We propose a Serial and Emotion-Knowledge interaction (SEEK) method for empathetic dialogue generation.
We use a fine-grained encoding strategy which is more sensitive to the emotion dynamics (emotion flow) in the conversations to predict the emotion-intent characteristic of response. Besides, we design a novel framework to model the interaction between knowledge and emotion to generate more sensible response.
arXiv Detail & Related papers (2022-10-21T03:51:18Z) - CASE: Aligning Coarse-to-Fine Cognition and Affection for Empathetic
Response Generation [59.8935454665427]
Empathetic dialogue models usually consider only the affective aspect or treat cognition and affection in isolation.
We propose the CASE model for empathetic dialogue generation.
arXiv Detail & Related papers (2022-08-18T14:28:38Z) - Knowledge Bridging for Empathetic Dialogue Generation [52.39868458154947]
Lack of external knowledge makes empathetic dialogue systems difficult to perceive implicit emotions and learn emotional interactions from limited dialogue history.
We propose to leverage external knowledge, including commonsense knowledge and emotional lexical knowledge, to explicitly understand and express emotions in empathetic dialogue generation.
arXiv Detail & Related papers (2020-09-21T09:21:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.