A Survey of Text Games for Reinforcement Learning informed by Natural
Language
- URL: http://arxiv.org/abs/2109.09478v1
- Date: Mon, 20 Sep 2021 12:32:57 GMT
- Title: A Survey of Text Games for Reinforcement Learning informed by Natural
Language
- Authors: Philip Osborne, Heido N\~omm and Andre Freitas
- Abstract summary: This survey aims to assist in the development of new Text Game problem settings and solutions for Reinforcement Learning informed by natural language.
Specifically, this survey summarises: 1) the challenges introduced in Text Game Reinforcement Learning problems, 2) the generation tools for evaluating Text Games and the subsequent environments generated, and 3) the agent architectures currently applied.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement Learning has shown success in a number of complex virtual
environments. However, many challenges still exist towards solving problems
with natural language as a core component. Interactive Fiction Games (or Text
Games) are one such problem type that offer a set of partially observable
environments where natural language is required as part of the reinforcement
learning solutions.
Therefore, this survey's aim is to assist in the development of new Text Game
problem settings and solutions for Reinforcement Learning informed by natural
language. Specifically, this survey summarises: 1) the challenges introduced in
Text Game Reinforcement Learning problems, 2) the generation tools for
evaluating Text Games and the subsequent environments generated and, 3) the
agent architectures currently applied are compared to provide a systematic
review of benchmark methodologies and opportunities for future researchers.
Related papers
- Perceiving the World: Question-guided Reinforcement Learning for
Text-based Games [64.11746320061965]
This paper introduces world-perceiving modules, which automatically decompose tasks and prune actions by answering questions about the environment.
We then propose a two-phase training framework to decouple language learning from reinforcement learning, which further improves the sample efficiency.
arXiv Detail & Related papers (2022-03-20T04:23:57Z) - Generalization in Text-based Games via Hierarchical Reinforcement
Learning [42.70991837415775]
We introduce a hierarchical framework built upon the knowledge graph-based RL agent.
In the high level, a meta-policy is executed to decompose the whole game into a set of subtasks specified by textual goals.
In the low level, a sub-policy is executed to conduct goal-conditioned reinforcement learning.
arXiv Detail & Related papers (2021-09-21T05:27:33Z) - Situated Language Learning via Interactive Narratives [16.67845396797253]
This paper explores the question of how to imbue learning agents with the ability to understand and generate contextually relevant natural language.
Two key components in creating such agents are interactivity and environment grounding.
We discuss the unique challenges a text games' puzzle-like structure combined with natural language state-and-action spaces provides.
arXiv Detail & Related papers (2021-03-18T01:55:16Z) - Deep Reinforcement Learning with Stacked Hierarchical Attention for
Text-based Games [64.11746320061965]
We study reinforcement learning for text-based games, which are interactive simulations in the context of natural language.
We aim to conduct explicit reasoning with knowledge graphs for decision making, so that the actions of an agent are generated and supported by an interpretable inference procedure.
We extensively evaluate our method on a number of man-made benchmark games, and the experimental results demonstrate that our method performs better than existing text-based agents.
arXiv Detail & Related papers (2020-10-22T12:40:22Z) - Positioning yourself in the maze of Neural Text Generation: A
Task-Agnostic Survey [54.34370423151014]
This paper surveys the components of modeling approaches relaying task impacts across various generation tasks such as storytelling, summarization, translation etc.
We present an abstraction of the imperative techniques with respect to learning paradigms, pretraining, modeling approaches, decoding and the key challenges outstanding in the field in each of them.
arXiv Detail & Related papers (2020-10-14T17:54:42Z) - A Survey of Knowledge-Enhanced Text Generation [81.24633231919137]
The goal of text generation is to make machines express in human language.
Various neural encoder-decoder models have been proposed to achieve the goal by learning to map input text to output text.
To address this issue, researchers have considered incorporating various forms of knowledge beyond the input text into the generation models.
arXiv Detail & Related papers (2020-10-09T06:46:46Z) - Interactive Fiction Game Playing as Multi-Paragraph Reading
Comprehension with Reinforcement Learning [94.50608198582636]
Interactive Fiction (IF) games with real human-written natural language texts provide a new natural evaluation for language understanding techniques.
We take a novel perspective of IF game solving and re-formulate it as Multi-Passage Reading (MPRC) tasks.
arXiv Detail & Related papers (2020-10-05T23:09:20Z) - Exploration Based Language Learning for Text-Based Games [72.30525050367216]
This work presents an exploration and imitation-learning-based agent capable of state-of-the-art performance in playing text-based computer games.
Text-based computer games describe their world to the player through natural language and expect the player to interact with the game using text.
These games are of interest as they can be seen as a testbed for language understanding, problem-solving, and language generation by artificial agents.
arXiv Detail & Related papers (2020-01-24T03:03:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.