Fundamental Machine Learning Routines as Quantum Algorithms on a
Superconducting Quantum Computer
- URL: http://arxiv.org/abs/2109.09522v1
- Date: Fri, 17 Sep 2021 15:22:06 GMT
- Title: Fundamental Machine Learning Routines as Quantum Algorithms on a
Superconducting Quantum Computer
- Authors: Sristy Sangskriti, Protik Nag, Summit Haque
- Abstract summary: Harrow-Hassidim-Lloyd algorithm is intended for solving the system of linear equations on quantum devices.
We present a numerical study of the performance of the algorithm when these caveats are not perfectly matched.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Harrow-Hassidim-Lloyd algorithm is intended for solving the system of
linear equations on quantum devices. The exponential advantage of the algorithm
comes with four caveats. We present a numerical study of the performance of the
algorithm when these caveats are not perfectly matched. We observe that,
between diagonal and non-diagonal matrices, the algorithm performs with higher
success probability for the diagonal matrices. At the same time, it fails to
perform well on lower or higher density sparse Hermitian matrices. Again,
Quantum Support Vector Machine algorithm is a promising algorithm for
classification problem. We have found out that it works better with binary
classification problem than multi-label classification problem. And there are
many opportunities left for improving the performance.
Related papers
- Quantum multi-row iteration algorithm for linear systems with non-square coefficient matrices [7.174256268278207]
We propose a quantum algorithm inspired by the classical multi-row iteration method.
Our algorithm places less demand on the coefficient matrix, making it suitable for solving inconsistent systems.
arXiv Detail & Related papers (2024-09-06T03:32:02Z) - Tensor Decompositions and Adiabatic Quantum Computing for Discovering Practical Matrix Multiplication Algorithms [1.5540058359482858]
We focus on discovering practical matrix multiplication algorithms and develop two algorithms to compute decompositions on quantum computers.
The algorithms are expressed as higher-order unconstrained binary optimization (HUBO) problems.
We show that by fixing a shorter length than the length for the best-known decomposition, we can ensure that the solution to the holistic optimization problem would yield faster matrix multiplication algorithms.
arXiv Detail & Related papers (2024-06-19T10:05:57Z) - Generalized quantum Arimoto-Blahut algorithm and its application to
quantum information bottleneck [55.22418739014892]
We generalize the quantum Arimoto-Blahut algorithm by Ramakrishnan et al.
We apply our algorithm to the quantum information bottleneck with three quantum systems.
Our numerical analysis shows that our algorithm is better than their algorithm.
arXiv Detail & Related papers (2023-11-19T00:06:11Z) - Learning the Positions in CountSketch [49.57951567374372]
We consider sketching algorithms which first compress data by multiplication with a random sketch matrix, and then apply the sketch to quickly solve an optimization problem.
In this work, we propose the first learning-based algorithms that also optimize the locations of the non-zero entries.
arXiv Detail & Related papers (2023-06-11T07:28:35Z) - A near-term quantum algorithm for solving linear systems of equations based on the Woodbury identity [0.602276990341246]
We describe a quantum algorithm for solving linear systems of equations that avoids problems such as barren plateaus and local optima.
Our algorithm is based on the Woodbury identity, which analytically describes the inverse of a matrix that is a low-rank modification of another (easily-invertible) matrix.
We estimate the inner product involving the solution of a system of more than 16 million equations with 2% error using IBM's Auckland quantum computer.
arXiv Detail & Related papers (2022-05-02T04:32:01Z) - Quantum algorithms for matrix operations and linear systems of equations [65.62256987706128]
We propose quantum algorithms for matrix operations using the "Sender-Receiver" model.
These quantum protocols can be used as subroutines in other quantum schemes.
arXiv Detail & Related papers (2022-02-10T08:12:20Z) - A Quantum Computer Amenable Sparse Matrix Equation Solver [0.0]
We study problems involving the solution of matrix equations, for which there currently exists no efficient, general quantum procedure.
We develop a generalization of the Harrow/Hassidim/Lloyd algorithm by providing an alternative unitary for eigenphase estimation.
This unitary has the advantage of being well defined for any arbitrary matrix equation, thereby allowing the solution procedure to be directly implemented on quantum hardware.
arXiv Detail & Related papers (2021-12-05T15:42:32Z) - Provably Faster Algorithms for Bilevel Optimization [54.83583213812667]
Bilevel optimization has been widely applied in many important machine learning applications.
We propose two new algorithms for bilevel optimization.
We show that both algorithms achieve the complexity of $mathcalO(epsilon-1.5)$, which outperforms all existing algorithms by the order of magnitude.
arXiv Detail & Related papers (2021-06-08T21:05:30Z) - Quantum algorithms for spectral sums [50.045011844765185]
We propose new quantum algorithms for estimating spectral sums of positive semi-definite (PSD) matrices.
We show how the algorithms and techniques used in this work can be applied to three problems in spectral graph theory.
arXiv Detail & Related papers (2020-11-12T16:29:45Z) - Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra [53.46106569419296]
We create classical (non-quantum) dynamic data structures supporting queries for recommender systems and least-squares regression.
We argue that the previous quantum-inspired algorithms for these problems are doing leverage or ridge-leverage score sampling in disguise.
arXiv Detail & Related papers (2020-11-09T01:13:07Z) - Quantum Spectral Clustering [5.414308305392762]
Spectral clustering is a powerful machine learning algorithm for clustering data with non convex or nested structures.
We propose an end-to-end quantum algorithm spectral clustering, extending a number of works in quantum machine learning.
arXiv Detail & Related papers (2020-07-01T07:11:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.