mGNN: Generalizing the Graph Neural Networks to the Multilayer Case
- URL: http://arxiv.org/abs/2109.10119v1
- Date: Tue, 21 Sep 2021 12:02:12 GMT
- Title: mGNN: Generalizing the Graph Neural Networks to the Multilayer Case
- Authors: Marco Grassia, Manlio De Domenico, Giuseppe Mangioni
- Abstract summary: We propose mGNN, a framework meant to generalize GNNs to multi-layer networks.
Our approach is general (i.e., not task specific) and has the advantage of extending any type of GNN without any computational overhead.
We test the framework into three different tasks (node and network classification, link prediction) to validate it.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Networks are a powerful tool to model complex systems, and the definition of
many Graph Neural Networks (GNN), Deep Learning algorithms that can handle
networks, has opened a new way to approach many real-world problems that would
be hardly or even untractable. In this paper, we propose mGNN, a framework
meant to generalize GNNs to the case of multi-layer networks, i.e., networks
that can model multiple kinds of interactions and relations between nodes. Our
approach is general (i.e., not task specific) and has the advantage of
extending any type of GNN without any computational overhead. We test the
framework into three different tasks (node and network classification, link
prediction) to validate it.
Related papers
- Degree-based stratification of nodes in Graph Neural Networks [66.17149106033126]
We modify the Graph Neural Network (GNN) architecture so that the weight matrices are learned, separately, for the nodes in each group.
This simple-to-implement modification seems to improve performance across datasets and GNN methods.
arXiv Detail & Related papers (2023-12-16T14:09:23Z) - You Can Have Better Graph Neural Networks by Not Training Weights at
All: Finding Untrained GNNs Tickets [105.24703398193843]
Untrainedworks in graph neural networks (GNNs) still remains mysterious.
We show that the found untrainedworks can substantially mitigate the GNN over-smoothing problem.
We also observe that such sparse untrainedworks have appealing performance in out-of-distribution detection and robustness of input perturbations.
arXiv Detail & Related papers (2022-11-28T14:17:36Z) - Scaling Graph-based Deep Learning models to larger networks [2.946140899052065]
Graph Neural Networks (GNN) have shown a strong potential to be integrated into commercial products for network control and management.
This paper presents a GNN-based solution that can effectively scale to larger networks including higher link capacities and aggregated traffic on links.
arXiv Detail & Related papers (2021-10-04T09:04:19Z) - IGNNITION: Bridging the Gap Between Graph Neural Networks and Networking
Systems [4.1591055164123665]
We present IGNNITION, a novel open-source framework that enables fast prototyping of Graph Neural Networks (GNNs) for networking systems.
IGNNITION is based on an intuitive high-level abstraction that hides the complexity behind GNNs.
Our results show that the GNN models produced by IGNNITION are equivalent in terms of accuracy and performance to their native implementations.
arXiv Detail & Related papers (2021-09-14T14:28:21Z) - AdaGNN: A multi-modal latent representation meta-learner for GNNs based
on AdaBoosting [0.38073142980733]
Graph Neural Networks (GNNs) focus on extracting intrinsic network features.
We propose boosting-based meta learner for GNNs.
AdaGNN performs exceptionally well for applications with rich and diverse node neighborhood information.
arXiv Detail & Related papers (2021-08-14T03:07:26Z) - Edgeless-GNN: Unsupervised Inductive Edgeless Network Embedding [7.391641422048645]
We study the problem of embedding edgeless nodes such as users who newly enter the underlying network.
We propose Edgeless-GNN, a new framework that enables GNNs to generate node embeddings even for edgeless nodes through unsupervised inductive learning.
arXiv Detail & Related papers (2021-04-12T06:37:31Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
Graph Neural Networks (GNNs) have risen to prominence in learning representations for graph structured data.
In this work, we establish mathematically that the aggregation processes in a group of representative GNN models can be regarded as solving a graph denoising problem.
We instantiate a novel GNN model, ADA-UGNN, derived from UGNN, to handle graphs with adaptive smoothness across nodes.
arXiv Detail & Related papers (2020-10-05T04:57:18Z) - Graph Neural Networks: Architectures, Stability and Transferability [176.3960927323358]
Graph Neural Networks (GNNs) are information processing architectures for signals supported on graphs.
They are generalizations of convolutional neural networks (CNNs) in which individual layers contain banks of graph convolutional filters.
arXiv Detail & Related papers (2020-08-04T18:57:36Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
Graph neural networks (GNNs) aim to model the local graph structures and capture the hierarchical patterns by aggregating the information from neighbors.
It is a challenging task to develop an effective aggregation strategy for each node, given complex graphs and sparse features.
We propose Policy-GNN, a meta-policy framework that models the sampling procedure and message passing of GNNs into a combined learning process.
arXiv Detail & Related papers (2020-06-26T17:03:06Z) - EdgeNets:Edge Varying Graph Neural Networks [179.99395949679547]
This paper puts forth a general framework that unifies state-of-the-art graph neural networks (GNNs) through the concept of EdgeNet.
An EdgeNet is a GNN architecture that allows different nodes to use different parameters to weigh the information of different neighbors.
This is a general linear and local operation that a node can perform and encompasses under one formulation all existing graph convolutional neural networks (GCNNs) as well as graph attention networks (GATs)
arXiv Detail & Related papers (2020-01-21T15:51:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.