Quantum Holography from Fermion Fields
- URL: http://arxiv.org/abs/2109.10236v1
- Date: Mon, 20 Sep 2021 11:30:34 GMT
- Title: Quantum Holography from Fermion Fields
- Authors: Paola Zizzi
- Abstract summary: We prove the Quantum Holographic Principle, according to which the area of the boundary surface enclosing a region of space encodes a qubit per Planck unit.
We introduce fermion fields in the bulk, whose boundary surface is the two-dimensional sphere.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We demonstrate, in the context of Loop Quantum Gravity, the Quantum
Holographic Principle, according to which the area of the boundary surface
enclosing a region of space encodes a qubit per Planck unit. To this aim, we
introduce fermion fields in the bulk, whose boundary surface is the
two-dimensional sphere. The doubling of the fermionic degrees of freedom and
the use of the Bogoljubov transformations lead to pairs of spin network's edges
piercing the boundary surface with double punctures, giving rise to pixels of
area encoding a qubit. The proof is also valid in the case of a fuzzy sphere.
Related papers
- Curvature from multipartite entanglement in quantum gravity states [0.0]
We investigate the multipartite entanglement of a uniformly curved quantum 3D space region with boundary.
We find three entanglement regimes depending on the ratio between the number of tags (curvature) and the area of the dual surface at the boundary.
arXiv Detail & Related papers (2023-05-04T09:27:33Z) - Quantum Reference Frames at the Boundary of Spacetime [0.0]
An analysis is given of the local phase space of gravity coupled to matter to second order in perturbation theory.
The boundary modes take the role of reference frames for both diffeomorphisms and internal Lorentz rotations.
A multi-fingered Schr"odinger equation determines the relational evolution of the quantum states in the bulk.
arXiv Detail & Related papers (2023-02-22T20:10:03Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Fermion production at the boundary of an expanding universe: a cold-atom
gravitational analogue [68.8204255655161]
We study the phenomenon of cosmological particle production of Dirac fermions in a Friedman-Robertson-Walker spacetime.
We present a scheme for the quantum simulation of this gravitational analogue by means of ultra-cold atoms in Raman optical lattices.
arXiv Detail & Related papers (2022-12-02T18:28:23Z) - Topological Matter and Fractional Entangled Quantum Geometry through
Light [0.0]
We show that global topological properties are encoded from the poles of the surface allowing a correspondence between smooth fields, metric and quantum distance with the square of the topological number.
We develop the theory, "quantum topometry" in space and time, and present applications on transport from a Newtonian approach.
arXiv Detail & Related papers (2022-09-30T11:17:24Z) - Pointillisme \`a la Signac and Construction of a Pseudo Quantum Phase
Space [0.0]
We construct a quantum-mechanical substitute for the symplectic phase space.
The total space of this fiber bundle consists of geometric quantum states.
We show that the set of equivalence classes of unitarily related geometric quantum states is in a one-to-one correspondence with the set of all Gaussian wavepackets.
arXiv Detail & Related papers (2022-07-31T16:43:06Z) - Topological spin texture of chiral edge states in photonic
two-dimensional quantum walks [8.662555496768842]
Topological insulators host topology-linked boundary states, whose spin and charge degrees of freedom could be exploited to design topological devices with enhanced functionality.
We experimentally observe that dissipationless chiral edge states in a spin-orbit coupled anomalous Floquet topological phase exhibit topological spin texture on boundaries, realized via a two-dimensional quantum walk.
arXiv Detail & Related papers (2021-12-29T14:11:40Z) - Scaling limits of lattice quantum fields by wavelets [62.997667081978825]
The renormalization group is considered as an inductive system of scaling maps between lattice field algebras.
We show that the inductive limit of free lattice ground states exists and the limit state extends to the familiar massive continuum free field.
arXiv Detail & Related papers (2020-10-21T16:30:06Z) - Entanglement and Complexity of Purification in (1+1)-dimensional free
Conformal Field Theories [55.53519491066413]
We find pure states in an enlarged Hilbert space that encode the mixed state of a quantum field theory as a partial trace.
We analyze these quantities for two intervals in the vacuum of free bosonic and Ising conformal field theories.
arXiv Detail & Related papers (2020-09-24T18:00:13Z) - Density profile of a semi-infinite one-dimensional Bose gas and bound
states of the impurity [62.997667081978825]
We study the effect of the boundary on a system of weakly interacting bosons in one dimension.
The quantum contribution to the boson density gives rise to small corrections of the bound state energy levels.
arXiv Detail & Related papers (2020-07-21T13:12:33Z) - Radiative topological biphoton states in modulated qubit arrays [105.54048699217668]
We study topological properties of bound pairs of photons in spatially-modulated qubit arrays coupled to a waveguide.
For open boundary condition, we find exotic topological bound-pair edge states with radiative losses.
By joining two structures with different spatial modulations, we find long-lived interface states which may have applications in storage and quantum information processing.
arXiv Detail & Related papers (2020-02-24T04:44:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.