Digital Signal Processing Using Deep Neural Networks
- URL: http://arxiv.org/abs/2109.10404v1
- Date: Tue, 21 Sep 2021 18:59:32 GMT
- Title: Digital Signal Processing Using Deep Neural Networks
- Authors: Brian Shevitski, Yijing Watkins, Nicole Man, and Michael Girard
- Abstract summary: We present a custom deep neural network (DNN) specially designed to solve problems in the RF domain.
Our model leverages the mechanisms of feature extraction and attention through the combination of an autoencoder convolutional network with a transformer network.
We also present a new open dataset and physical data augmentation model that enables training of DNNs that can perform automatic modulation classification, infer and correct transmission channel effects, and directly demodulate baseband RF signals.
- Score: 2.624902795082451
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Currently there is great interest in the utility of deep neural networks
(DNNs) for the physical layer of radio frequency (RF) communications. In this
manuscript, we describe a custom DNN specially designed to solve problems in
the RF domain. Our model leverages the mechanisms of feature extraction and
attention through the combination of an autoencoder convolutional network with
a transformer network, to accomplish several important communications network
and digital signals processing (DSP) tasks. We also present a new open dataset
and physical data augmentation model that enables training of DNNs that can
perform automatic modulation classification, infer and correct transmission
channel effects, and directly demodulate baseband RF signals.
Related papers
- Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
In neuromorphic computing, spiking neural networks (SNNs) perform inference tasks, offering significant efficiency gains for workloads involving sequential data.
Recent advances in hardware and software have demonstrated that embedding a few bits of payload in each spike exchanged between the spiking neurons can further enhance inference accuracy.
This paper investigates a wireless neuromorphic split computing architecture employing multi-level SNNs.
arXiv Detail & Related papers (2024-11-07T14:08:35Z) - Age of Information in Deep Learning-Driven Task-Oriented Communications [78.84264189471936]
This paper studies the notion of age in task-oriented communications that aims to execute a task at a receiver utilizing the data at its transmitter.
The transmitter-receiver operations are modeled as an encoder-decoder pair of deep neural networks (DNNs) that are jointly trained.
arXiv Detail & Related papers (2023-01-11T04:15:51Z) - Interference Cancellation GAN Framework for Dynamic Channels [74.22393885274728]
We introduce an online training framework that can adapt to any changes in the channel.
Our framework significantly outperforms recent neural network models on highly dynamic channels.
arXiv Detail & Related papers (2022-08-17T02:01:18Z) - Neuromorphic Wireless Cognition: Event-Driven Semantic Communications
for Remote Inference [32.0035037154674]
This paper proposes an end-to-end design for a neuromorphic wireless Internet-of-Things system.
Each sensing device is equipped with a neuromorphic sensor, a spiking neural network (SNN), and an impulse radio transmitter with multiple antennas.
Pilots, encoding SNNs, decoding SNN, and hypernetwork are jointly trained across multiple channel realizations.
arXiv Detail & Related papers (2022-06-13T11:13:39Z) - Deep Learning for Spectral Filling in Radio Frequency Applications [0.7829352305480285]
We present methods for applying deep neural networks for spectral filling.
We learn novel modulation schemes for sending extra information, in the form of additional messages, "around" the fixed-modulation signals.
In so doing, we effectively increase channel capacity without increasing bandwidth.
arXiv Detail & Related papers (2022-03-31T20:31:54Z) - Three-Way Deep Neural Network for Radio Frequency Map Generation and
Source Localization [67.93423427193055]
Monitoring wireless spectrum over spatial, temporal, and frequency domains will become a critical feature in beyond-5G and 6G communication technologies.
In this paper, we present a Generative Adversarial Network (GAN) machine learning model to interpolate irregularly distributed measurements across the spatial domain.
arXiv Detail & Related papers (2021-11-23T22:25:10Z) - ChaRRNets: Channel Robust Representation Networks for RF Fingerprinting [0.0]
We present complex-valued Convolutional Neural Networks (CNNs) for RF fingerprinting.
We focus on the problem of fingerprinting wireless IoT devices in-the-wild using Deep Learning (DL) techniques.
arXiv Detail & Related papers (2021-05-08T03:03:21Z) - Deep Neural Network Feature Designs for RF Data-Driven Wireless Device
Classification [9.05607520128194]
We present novel feature design approaches that exploit the distinct structures of the RF communication signals and the spectrum emissions caused by transmitter hardware impairments.
Our proposed DNN feature designs substantially improve classification robustness in terms of scalability, accuracy, signature anti-cloning, and insensitivity to environment perturbations.
arXiv Detail & Related papers (2021-03-02T20:19:05Z) - T-WaveNet: Tree-Structured Wavelet Neural Network for Sensor-Based Time
Series Analysis [9.449017120452675]
We propose a novel tree-structured wavelet neural network for sensor data analysis, namely emphT-WaveNet.
T-WaveNet provides more effective representation for sensor information than existing techniques, and it achieves state-of-the-art performance on various sensor datasets.
arXiv Detail & Related papers (2020-12-10T05:07:28Z) - Flexible Transmitter Network [84.90891046882213]
Current neural networks are mostly built upon the MP model, which usually formulates the neuron as executing an activation function on the real-valued weighted aggregation of signals received from other neurons.
We propose the Flexible Transmitter (FT) model, a novel bio-plausible neuron model with flexible synaptic plasticity.
We present the Flexible Transmitter Network (FTNet), which is built on the most common fully-connected feed-forward architecture.
arXiv Detail & Related papers (2020-04-08T06:55:12Z) - A Big Data Enabled Channel Model for 5G Wireless Communication Systems [71.93009775340234]
This paper investigates various applications of big data analytics, especially machine learning algorithms in wireless communications and channel modeling.
We propose a big data and machine learning enabled wireless channel model framework.
The proposed channel model is based on artificial neural networks (ANNs), including feed-forward neural network (FNN) and radial basis function neural network (RBF-NN)
arXiv Detail & Related papers (2020-02-28T05:56:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.