AI in Osteoporosis
- URL: http://arxiv.org/abs/2109.10478v1
- Date: Wed, 22 Sep 2021 01:37:30 GMT
- Title: AI in Osteoporosis
- Authors: Sokratis Makrogiannis and Keni Zheng
- Abstract summary: This chapter explores and evaluate methods for trabecular bone characterization and osteoporosis diagnosis with increased interest in sparse approximations.
We first describe texture representation and classification techniques, patch-based methods such as Bag of Keypoints, and more recent deep neural networks.
We report cross-validation results on osteoporosis datasets of bone radiographs and compare the results produced by the different categories of methods.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this chapter we explore and evaluate methods for trabecular bone
characterization and osteoporosis diagnosis with increased interest in sparse
approximations. We first describe texture representation and classification
techniques, patch-based methods such as Bag of Keypoints, and more recent deep
neural networks. Then we introduce the concept of sparse representations for
pattern recognition and we detail integrative sparse analysis methods and
classifier decision fusion methods. We report cross-validation results on
osteoporosis datasets of bone radiographs and compare the results produced by
the different categories of methods. We conclude that advances in the AI and
machine learning fields have enabled the development of methods that can be
used as diagnostic tools in clinical settings.
Related papers
- TopOC: Topological Deep Learning for Ovarian and Breast Cancer Diagnosis [3.262230127283452]
Topological data analysis offers a unique approach by extracting essential information through the evaluation of topological patterns across different color channels.
We show that the inclusion of topological features significantly improves the differentiation of tumor types in ovarian and breast cancers.
arXiv Detail & Related papers (2024-10-13T12:24:13Z) - Evaluating Explanatory Capabilities of Machine Learning Models in Medical Diagnostics: A Human-in-the-Loop Approach [0.0]
We use Human-in-the-Loop related techniques and medical guidelines as a source of domain knowledge to establish the importance of the different features that are relevant to establish a pancreatic cancer treatment.
We propose the use of similarity measures such as the weighted Jaccard Similarity coefficient to facilitate interpretation of explanatory results.
arXiv Detail & Related papers (2024-03-28T20:11:34Z) - Shape Matters: Detecting Vertebral Fractures Using Differentiable
Point-Based Shape Decoding [51.38395069380457]
Degenerative spinal pathologies are highly prevalent among the elderly population.
Timely diagnosis of osteoporotic fractures and other degenerative deformities facilitates proactive measures to mitigate the risk of severe back pain and disability.
In this study, we specifically explore the use of shape auto-encoders for vertebrae.
arXiv Detail & Related papers (2023-12-08T18:11:22Z) - Noise-reducing attention cross fusion learning transformer for
histological image classification of osteosarcoma [2.8265965924600276]
This study aims to use artificial intelligence to classify osteosarcoma histological images and to assess tumor survival and necrosis.
We propose a typical transformer image classification framework by integrating noise reduction convolutional autoencoder and feature cross fusion learning.
Our method outperforms the traditional and deep learning approaches on various evaluation metrics, with an accuracy of 99.17% to support osteosarcoma diagnosis.
arXiv Detail & Related papers (2022-04-29T00:57:39Z) - BI-RADS-Net: An Explainable Multitask Learning Approach for Cancer
Diagnosis in Breast Ultrasound Images [69.41441138140895]
This paper introduces BI-RADS-Net, a novel explainable deep learning approach for cancer detection in breast ultrasound images.
The proposed approach incorporates tasks for explaining and classifying breast tumors, by learning feature representations relevant to clinical diagnosis.
Explanations of the predictions (benign or malignant) are provided in terms of morphological features that are used by clinicians for diagnosis and reporting in medical practice.
arXiv Detail & Related papers (2021-10-05T19:14:46Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z) - Automatic Breast Lesion Classification by Joint Neural Analysis of
Mammography and Ultrasound [1.9814912982226993]
We propose a deep-learning based method for classifying breast cancer lesions from their respective mammography and ultrasound images.
The proposed approach is based on a GoogleNet architecture, fine-tuned for our data in two training steps.
It achieves an AUC of 0.94, outperforming state-of-the-art models trained over a single modality.
arXiv Detail & Related papers (2020-09-23T09:08:24Z) - An Approach for Clustering Subjects According to Similarities in Cell
Distributions within Biopsies [0.0]
We introduce a novel and interpretable methodology to cluster subjects suffering from cancer, based on features extracted from their biopsies.
We illustrate our approach on a database of hematoxylin and eosin (H&E)-stained tissues of subjects suffering from Stage I lung adenocarcinoma.
arXiv Detail & Related papers (2020-06-30T22:30:58Z) - Weakly supervised multiple instance learning histopathological tumor
segmentation [51.085268272912415]
We propose a weakly supervised framework for whole slide imaging segmentation.
We exploit a multiple instance learning scheme for training models.
The proposed framework has been evaluated on multi-locations and multi-centric public data from The Cancer Genome Atlas and the PatchCamelyon dataset.
arXiv Detail & Related papers (2020-04-10T13:12:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.