LDC-VAE: A Latent Distribution Consistency Approach to Variational
AutoEncoders
- URL: http://arxiv.org/abs/2109.10640v1
- Date: Wed, 22 Sep 2021 10:34:40 GMT
- Title: LDC-VAE: A Latent Distribution Consistency Approach to Variational
AutoEncoders
- Authors: Xiaoyu Chen, Chen Gong, Qiang He, Xinwen Hou, and Yu Liu
- Abstract summary: We propose a latent distribution consistency approach to avoid substantial inconsistency between the posterior and prior latent distributions.
Our method has achieved comparable or even better performance than several powerful improvements of VAEs.
- Score: 26.349085280990657
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Variational autoencoders (VAEs), as an important aspect of generative models,
have received a lot of research interests and reached many successful
applications. However, it is always a challenge to achieve the consistency
between the learned latent distribution and the prior latent distribution when
optimizing the evidence lower bound (ELBO), and finally leads to an
unsatisfactory performance in data generation. In this paper, we propose a
latent distribution consistency approach to avoid such substantial
inconsistency between the posterior and prior latent distributions in ELBO
optimizing. We name our method as latent distribution consistency VAE
(LDC-VAE). We achieve this purpose by assuming the real posterior distribution
in latent space as a Gibbs form, and approximating it by using our encoder.
However, there is no analytical solution for such Gibbs posterior in
approximation, and traditional approximation ways are time consuming, such as
using the iterative sampling-based MCMC. To address this problem, we use the
Stein Variational Gradient Descent (SVGD) to approximate the Gibbs posterior.
Meanwhile, we use the SVGD to train a sampler net which can obtain efficient
samples from the Gibbs posterior. Comparative studies on the popular image
generation datasets show that our method has achieved comparable or even better
performance than several powerful improvements of VAEs.
Related papers
- Variational Learning of Gaussian Process Latent Variable Models through Stochastic Gradient Annealed Importance Sampling [22.256068524699472]
In this work, we propose an Annealed Importance Sampling (AIS) approach to address these issues.
We combine the strengths of Sequential Monte Carlo samplers and VI to explore a wider range of posterior distributions and gradually approach the target distribution.
Experimental results on both toy and image datasets demonstrate that our method outperforms state-of-the-art methods in terms of tighter variational bounds, higher log-likelihoods, and more robust convergence.
arXiv Detail & Related papers (2024-08-13T08:09:05Z) - Gaussian Mixture Solvers for Diffusion Models [84.83349474361204]
We introduce a novel class of SDE-based solvers called GMS for diffusion models.
Our solver outperforms numerous SDE-based solvers in terms of sample quality in image generation and stroke-based synthesis.
arXiv Detail & Related papers (2023-11-02T02:05:38Z) - Complexity Matters: Rethinking the Latent Space for Generative Modeling [65.64763873078114]
In generative modeling, numerous successful approaches leverage a low-dimensional latent space, e.g., Stable Diffusion.
In this study, we aim to shed light on this under-explored topic by rethinking the latent space from the perspective of model complexity.
arXiv Detail & Related papers (2023-07-17T07:12:29Z) - Plug-and-Play split Gibbs sampler: embedding deep generative priors in
Bayesian inference [12.91637880428221]
This paper introduces a plug-and-play sampling algorithm that leverages variable splitting to efficiently sample from a posterior distribution.
It divides the challenging task of posterior sampling into two simpler sampling problems.
Its performance is compared to recent state-of-the-art optimization and sampling methods.
arXiv Detail & Related papers (2023-04-21T17:17:51Z) - Langevin Monte Carlo for Contextual Bandits [72.00524614312002]
Langevin Monte Carlo Thompson Sampling (LMC-TS) is proposed to directly sample from the posterior distribution in contextual bandits.
We prove that the proposed algorithm achieves the same sublinear regret bound as the best Thompson sampling algorithms for a special case of contextual bandits.
arXiv Detail & Related papers (2022-06-22T17:58:23Z) - Score-Guided Intermediate Layer Optimization: Fast Langevin Mixing for
Inverse Problem [97.64313409741614]
We prove fast mixing and characterize the stationary distribution of the Langevin Algorithm for inverting random weighted DNN generators.
We propose to do posterior sampling in the latent space of a pre-trained generative model.
arXiv Detail & Related papers (2022-06-18T03:47:37Z) - Exponentially Tilted Gaussian Prior for Variational Autoencoder [3.52359746858894]
Recent studies show that probabilistic generative models can perform poorly on this task.
We propose the exponentially tilted Gaussian prior distribution for the Variational Autoencoder (VAE)
We show that our model produces high quality image samples which are more crisp than that of a standard Gaussian VAE.
arXiv Detail & Related papers (2021-11-30T18:28:19Z) - Model Selection for Bayesian Autoencoders [25.619565817793422]
We propose to optimize the distributional sliced-Wasserstein distance between the output of the autoencoder and the empirical data distribution.
We turn our BAE into a generative model by fitting a flexible Dirichlet mixture model in the latent space.
We evaluate our approach qualitatively and quantitatively using a vast experimental campaign on a number of unsupervised learning tasks and show that, in small-data regimes where priors matter, our approach provides state-of-the-art results.
arXiv Detail & Related papers (2021-06-11T08:55:00Z) - Reducing the Amortization Gap in Variational Autoencoders: A Bayesian
Random Function Approach [38.45568741734893]
Inference in our GP model is done by a single feed forward pass through the network, significantly faster than semi-amortized methods.
We show that our approach attains higher test data likelihood than the state-of-the-arts on several benchmark datasets.
arXiv Detail & Related papers (2021-02-05T13:01:12Z) - Score-Based Generative Modeling through Stochastic Differential
Equations [114.39209003111723]
We present a differential equation that transforms a complex data distribution to a known prior distribution by injecting noise.
A corresponding reverse-time SDE transforms the prior distribution back into the data distribution by slowly removing the noise.
By leveraging advances in score-based generative modeling, we can accurately estimate these scores with neural networks.
We demonstrate high fidelity generation of 1024 x 1024 images for the first time from a score-based generative model.
arXiv Detail & Related papers (2020-11-26T19:39:10Z) - Stein Variational Inference for Discrete Distributions [70.19352762933259]
We propose a simple yet general framework that transforms discrete distributions to equivalent piecewise continuous distributions.
Our method outperforms traditional algorithms such as Gibbs sampling and discontinuous Hamiltonian Monte Carlo.
We demonstrate that our method provides a promising tool for learning ensembles of binarized neural network (BNN)
In addition, such transform can be straightforwardly employed in gradient-free kernelized Stein discrepancy to perform goodness-of-fit (GOF) test on discrete distributions.
arXiv Detail & Related papers (2020-03-01T22:45:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.