Improved Multi-label Classification with Frequent Label-set Mining and
Association
- URL: http://arxiv.org/abs/2109.10797v1
- Date: Wed, 22 Sep 2021 15:36:46 GMT
- Title: Improved Multi-label Classification with Frequent Label-set Mining and
Association
- Authors: Anwesha Law, Ashish Ghosh
- Abstract summary: A novel approach of frequent label-set mining has been proposed to extract correlated classes from the label-sets of the data.
A concept of certain and uncertain scores has been defined here, where the proposed method aims to improve the uncertain scores with the help of the certain scores and their corresponding CP-CA rules.
- Score: 14.150518141172434
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-label (ML) data deals with multiple classes associated with individual
samples at the same time. This leads to the co-occurrence of several classes
repeatedly, which indicates some existing correlation among them. In this
article, the correlation among classes has been explored to improve the
classification performance of existing ML classifiers. A novel approach of
frequent label-set mining has been proposed to extract these correlated classes
from the label-sets of the data. Both co-presence (CP) and co-absence (CA) of
classes have been taken into consideration. The rules mined from the ML data
has been further used to incorporate class correlation information into
existing ML classifiers. The soft scores generated by an ML classifier are
modified through a novel approach using the CP-CA rules. A concept of certain
and uncertain scores has been defined here, where the proposed method aims to
improve the uncertain scores with the help of the certain scores and their
corresponding CP-CA rules. This has been experimentally analysed on ten ML
datasets for three ML existing classifiers which shows substantial improvement
in their overall performance.
Related papers
- Class-Distribution-Aware Pseudo Labeling for Semi-Supervised Multi-Label
Learning [97.88458953075205]
Pseudo-labeling has emerged as a popular and effective approach for utilizing unlabeled data.
This paper proposes a novel solution called Class-Aware Pseudo-Labeling (CAP) that performs pseudo-labeling in a class-aware manner.
arXiv Detail & Related papers (2023-05-04T12:52:18Z) - Parametric Classification for Generalized Category Discovery: A Baseline
Study [70.73212959385387]
Generalized Category Discovery (GCD) aims to discover novel categories in unlabelled datasets using knowledge learned from labelled samples.
We investigate the failure of parametric classifiers, verify the effectiveness of previous design choices when high-quality supervision is available, and identify unreliable pseudo-labels as a key problem.
We propose a simple yet effective parametric classification method that benefits from entropy regularisation, achieves state-of-the-art performance on multiple GCD benchmarks and shows strong robustness to unknown class numbers.
arXiv Detail & Related papers (2022-11-21T18:47:11Z) - PercentMatch: Percentile-based Dynamic Thresholding for Multi-Label
Semi-Supervised Classification [64.39761523935613]
We propose a percentile-based threshold adjusting scheme to dynamically alter the score thresholds of positive and negative pseudo-labels for each class during the training.
We achieve strong performance on Pascal VOC2007 and MS-COCO datasets when compared to recent SSL methods.
arXiv Detail & Related papers (2022-08-30T01:27:48Z) - Class-Incremental Lifelong Learning in Multi-Label Classification [3.711485819097916]
This paper studies Lifelong Multi-Label (LML) classification, which builds an online class-incremental classifier in a sequential multi-label classification data stream.
To solve the problem, the study proposes an Augmented Graph Convolutional Network (AGCN) with a built Augmented Correlation Matrix (ACM) across sequential partial-label tasks.
arXiv Detail & Related papers (2022-07-16T05:14:07Z) - Decision Making for Hierarchical Multi-label Classification with
Multidimensional Local Precision Rate [4.812468844362369]
We introduce a new statistic called the multidimensional local precision rate (mLPR) for each object in each class.
We show that classification decisions made by simply sorting objects across classes in descending order of their mLPRs can, in theory, ensure the class hierarchy.
In response, we introduce HierRank, a new algorithm that maximizes an empirical version of CATCH using estimated mLPRs while respecting the hierarchy.
arXiv Detail & Related papers (2022-05-16T17:43:35Z) - Evolving Multi-Label Fuzzy Classifier [5.53329677986653]
Multi-label classification has attracted much attention in the machine learning community to address the problem of assigning single samples to more than one class at the same time.
We propose an evolving multi-label fuzzy classifier (EFC-ML) which is able to self-adapt and self-evolve its structure with new incoming multi-label samples in an incremental, single-pass manner.
arXiv Detail & Related papers (2022-03-29T08:01:03Z) - Gated recurrent units and temporal convolutional network for multilabel
classification [122.84638446560663]
This work proposes a new ensemble method for managing multilabel classification.
The core of the proposed approach combines a set of gated recurrent units and temporal convolutional neural networks trained with variants of the Adam gradients optimization approach.
arXiv Detail & Related papers (2021-10-09T00:00:16Z) - PLM: Partial Label Masking for Imbalanced Multi-label Classification [59.68444804243782]
Neural networks trained on real-world datasets with long-tailed label distributions are biased towards frequent classes and perform poorly on infrequent classes.
We propose a method, Partial Label Masking (PLM), which utilizes this ratio during training.
Our method achieves strong performance when compared to existing methods on both multi-label (MultiMNIST and MSCOCO) and single-label (imbalanced CIFAR-10 and CIFAR-100) image classification datasets.
arXiv Detail & Related papers (2021-05-22T18:07:56Z) - Cooperative Bi-path Metric for Few-shot Learning [50.98891758059389]
We make two contributions to investigate the few-shot classification problem.
We report a simple and effective baseline trained on base classes in the way of traditional supervised learning.
We propose a cooperative bi-path metric for classification, which leverages the correlations between base classes and novel classes to further improve the accuracy.
arXiv Detail & Related papers (2020-08-10T11:28:52Z) - Evolving Multi-label Classification Rules by Exploiting High-order Label
Correlation [2.9822184411723645]
In multi-label classification tasks, each problem instance is associated with multiple classes simultaneously.
The correlation between labels can be exploited at different levels such as capturing the pair-wise correlation or exploiting the higher-order correlations.
This paper aims at exploiting the high-order label correlation within subsets of labels using a supervised learning classifier system.
arXiv Detail & Related papers (2020-07-22T18:13:12Z) - ML-KFHE: Multi-label ensemble classification algorithm exploiting sensor
fusion properties of the Kalman filter [8.493936898320671]
The Kalman Filter-based Heuristic Ensemble (KFHE) is an ensemble method that exploits the sensor fusion properties of the Kalman filter to combine several models.
This work proposes a multilabel version of KFHE, demonstrating the effectiveness of KFHE on multilabel datasets.
arXiv Detail & Related papers (2019-04-23T22:10:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.