Deep Learning for Ultrasound Beamforming
- URL: http://arxiv.org/abs/2109.11431v1
- Date: Thu, 23 Sep 2021 15:15:21 GMT
- Title: Deep Learning for Ultrasound Beamforming
- Authors: Ruud JG van Sloun, Jong Chul Ye, Yonina C Eldar
- Abstract summary: Beamforming, the process of mapping received ultrasound echoes to the spatial image domain, lies at the heart of the ultrasound image formation chain.
Modern ultrasound imaging leans heavily on innovations in powerful digital receive channel processing.
Deep learning methods can play a compelling role in the digital beamforming pipeline.
- Score: 120.12255978513912
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diagnostic imaging plays a critical role in healthcare, serving as a
fundamental asset for timely diagnosis, disease staging and management as well
as for treatment choice, planning, guidance, and follow-up. Among the
diagnostic imaging options, ultrasound imaging is uniquely positioned, being a
highly cost-effective modality that offers the clinician an unmatched and
invaluable level of interaction, enabled by its real-time nature. Ultrasound
probes are becoming increasingly compact and portable, with the market demand
for low-cost pocket-sized and (in-body) miniaturized devices expanding. At the
same time, there is a strong trend towards 3D imaging and the use of
high-frame-rate imaging schemes; both accompanied by dramatically increasing
data rates that pose a heavy burden on the probe-system communication and
subsequent image reconstruction algorithms.
With the demand for high-quality image reconstruction and signal extraction
from less (e.g unfocused or parallel) transmissions that facilitate fast
imaging, and a push towards compact probes, modern ultrasound imaging leans
heavily on innovations in powerful digital receive channel processing.
Beamforming, the process of mapping received ultrasound echoes to the spatial
image domain, naturally lies at the heart of the ultrasound image formation
chain. In this chapter on Deep Learning for Ultrasound Beamforming, we discuss
why and when deep learning methods can play a compelling role in the digital
beamforming pipeline, and then show how these data-driven systems can be
leveraged for improved ultrasound image reconstruction.
Related papers
- PHOCUS: Physics-Based Deconvolution for Ultrasound Resolution Enhancement [36.20701982473809]
The impulse function of an ultrasound imaging system is called the point spread function (PSF), which is convolved with the spatial distribution of reflectors in the image formation process.
We introduce a physics-based deconvolution process using a modeled PSF, working directly on the more commonly available B-mode images.
By leveraging Implicit Neural Representations (INRs), we learn a continuous mapping from spatial locations to their respective echogenicity values, effectively compensating for the discretized image space.
arXiv Detail & Related papers (2024-08-07T09:52:30Z) - S-CycleGAN: Semantic Segmentation Enhanced CT-Ultrasound Image-to-Image Translation for Robotic Ultrasonography [2.07180164747172]
We introduce an advanced deep learning model, dubbed S-CycleGAN, which generates high-quality synthetic ultrasound images from computed tomography (CT) data.
The synthetic images are utilized to enhance various aspects of our development of the robot-assisted ultrasound scanning system.
arXiv Detail & Related papers (2024-06-03T10:53:45Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - Cardiac ultrasound simulation for autonomous ultrasound navigation [4.036497185262817]
We propose a method to generate large amounts of ultrasound images from other modalities and from arbitrary positions.
We present a novel simulation pipeline which uses segmentations from other modalities, an optimized data representation and GPU-accelerated Monte Carlo path tracing.
The proposed approach allows for fast and accurate patient-specific ultrasound image generation, and its usability for training networks for navigation-related tasks is demonstrated.
arXiv Detail & Related papers (2024-02-09T15:14:48Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
endovascular surgeries are performed using the golden standard of Fluoroscopy, which uses ionising radiation to visualise catheters and vasculature.
This work proposes a solution using an adaptation of a state-of-the-art machine learning transformer architecture to detect and segment catheters in axial interventional Ultrasound image sequences.
arXiv Detail & Related papers (2023-09-25T19:34:12Z) - Reslicing Ultrasound Images for Data Augmentation and Vessel
Reconstruction [22.336362581634706]
This paper introduces RESUS, a weak supervision data augmentation technique for ultrasound images based on slicing reconstructed 3D volumes from tracked 2D images.
We generate views which cannot be easily obtained in vivo due to physical constraints of ultrasound imaging, and use these augmented ultrasound images to train a semantic segmentation model.
We demonstrate that RESUS achieves statistically significant improvement over training with non-augmented images and highlight qualitative improvements through vessel reconstruction.
arXiv Detail & Related papers (2023-01-18T03:22:47Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
Optoacoustic (OA) imaging is based on excitation of biological tissues with nanosecond-duration laser pulses followed by detection of ultrasound waves generated via light-absorption-mediated thermoelastic expansion.
OA imaging features a powerful combination between rich optical contrast and high resolution in deep tissues.
No standardized datasets generated with different types of experimental set-up and associated processing methods are available to facilitate advances in broader applications of OA in clinical settings.
arXiv Detail & Related papers (2022-06-17T08:11:26Z) - Ultrasound Signal Processing: From Models to Deep Learning [64.56774869055826]
Medical ultrasound imaging relies heavily on high-quality signal processing to provide reliable and interpretable image reconstructions.
Deep learning based methods, which are optimized in a data-driven fashion, have gained popularity.
A relatively new paradigm combines the power of the two: leveraging data-driven deep learning, as well as exploiting domain knowledge.
arXiv Detail & Related papers (2022-04-09T13:04:36Z) - Voice-assisted Image Labelling for Endoscopic Ultrasound Classification
using Neural Networks [48.732863591145964]
We propose a multi-modal convolutional neural network architecture that labels endoscopic ultrasound (EUS) images from raw verbal comments provided by a clinician during the procedure.
Our results show a prediction accuracy of 76% at image level on a dataset with 5 different labels.
arXiv Detail & Related papers (2021-10-12T21:22:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.