iFacetSum: Coreference-based Interactive Faceted Summarization for
Multi-Document Exploration
- URL: http://arxiv.org/abs/2109.11621v1
- Date: Thu, 23 Sep 2021 20:01:11 GMT
- Title: iFacetSum: Coreference-based Interactive Faceted Summarization for
Multi-Document Exploration
- Authors: Eran Hirsch and Alon Eirew and Ori Shapira and Avi Caciularu and Arie
Cattan and Ori Ernst and Ramakanth Pasunuru and Hadar Ronen and Mohit Bansal
and Ido Dagan
- Abstract summary: iFacetSum integrates interactive summarization together with faceted search.
Fine-grained facets are automatically produced based on cross-document coreference pipelines.
- Score: 63.272359227081836
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce iFacetSum, a web application for exploring topical document
sets. iFacetSum integrates interactive summarization together with faceted
search, by providing a novel faceted navigation scheme that yields abstractive
summaries for the user's selections. This approach offers both a comprehensive
overview as well as concise details regarding subtopics of choice. Fine-grained
facets are automatically produced based on cross-document coreference
pipelines, rendering generic concepts, entities and statements surfacing in the
source texts. We analyze the effectiveness of our application through
small-scale user studies, which suggest the usefulness of our approach.
Related papers
- Unified Multi-Modal Interleaved Document Representation for Information Retrieval [57.65409208879344]
We produce more comprehensive and nuanced document representations by holistically embedding documents interleaved with different modalities.
Specifically, we achieve this by leveraging the capability of recent vision-language models that enable the processing and integration of text, images, and tables into a unified format and representation.
arXiv Detail & Related papers (2024-10-03T17:49:09Z) - Beyond Relevant Documents: A Knowledge-Intensive Approach for Query-Focused Summarization using Large Language Models [27.90653125902507]
We propose a knowledge-intensive approach that reframes query-focused summarization as a knowledge-intensive task setup.
The retrieval module efficiently retrieves potentially relevant documents from a large-scale knowledge corpus.
The summarization controller seamlessly integrates a powerful large language model (LLM)-based summarizer with a carefully tailored prompt.
arXiv Detail & Related papers (2024-08-19T18:54:20Z) - QuOTeS: Query-Oriented Technical Summarization [0.2936007114555107]
We propose QuOTeS, an interactive system designed to retrieve sentences related to a summary of the research from a collection of potential references.
QuOTeS integrates techniques from Query-Focused Extractive Summarization and High-Recall Information Retrieval to provide Interactive Query-Focused Summarization of scientific documents.
The results show that QuOTeS provides a positive user experience and consistently provides query-focused summaries that are relevant, concise, and complete.
arXiv Detail & Related papers (2023-06-20T18:43:24Z) - Using Textual Interface to Align External Knowledge for End-to-End
Task-Oriented Dialogue Systems [53.38517204698343]
We propose a novel paradigm that uses a textual interface to align external knowledge and eliminate redundant processes.
We demonstrate our paradigm in practice through MultiWOZ-Remake, including an interactive textual interface built for the MultiWOZ database.
arXiv Detail & Related papers (2023-05-23T05:48:21Z) - TRIE++: Towards End-to-End Information Extraction from Visually Rich
Documents [51.744527199305445]
This paper proposes a unified end-to-end information extraction framework from visually rich documents.
Text reading and information extraction can reinforce each other via a well-designed multi-modal context block.
The framework can be trained in an end-to-end trainable manner, achieving global optimization.
arXiv Detail & Related papers (2022-07-14T08:52:07Z) - Aspect-Oriented Summarization through Query-Focused Extraction [23.62412515574206]
Real users' needs often fall more closely into aspects, broad topics in a dataset the user is interested in rather than specific queries.
We benchmark extractive query-focused training schemes, and propose a contrastive augmentation approach to train the model.
We evaluate on two aspect-oriented datasets and find this approach yields focused summaries, better than those from a generic summarization system.
arXiv Detail & Related papers (2021-10-15T18:06:21Z) - Modeling Endorsement for Multi-Document Abstractive Summarization [10.166639983949887]
A crucial difference between single- and multi-document summarization is how salient content manifests itself in the document(s)
In this paper, we model the cross-document endorsement effect and its utilization in multiple document summarization.
Our method generates a synopsis from each document, which serves as an endorser to identify salient content from other documents.
arXiv Detail & Related papers (2021-10-15T03:55:42Z) - Text Summarization with Latent Queries [60.468323530248945]
We introduce LaQSum, the first unified text summarization system that learns Latent Queries from documents for abstractive summarization with any existing query forms.
Under a deep generative framework, our system jointly optimize a latent query model and a conditional language model, allowing users to plug-and-play queries of any type at test time.
Our system robustly outperforms strong comparison systems across summarization benchmarks with different query types, document settings, and target domains.
arXiv Detail & Related papers (2021-05-31T21:14:58Z) - Topic-Guided Abstractive Text Summarization: a Joint Learning Approach [19.623946402970933]
We introduce a new approach for abstractive text summarization, Topic-Guided Abstractive Summarization.
The idea is to incorporate neural topic modeling with a Transformer-based sequence-to-sequence (seq2seq) model in a joint learning framework.
arXiv Detail & Related papers (2020-10-20T14:45:25Z) - From Standard Summarization to New Tasks and Beyond: Summarization with
Manifold Information [77.89755281215079]
Text summarization is the research area aiming at creating a short and condensed version of the original document.
In real-world applications, most of the data is not in a plain text format.
This paper focuses on the survey of these new summarization tasks and approaches in the real-world application.
arXiv Detail & Related papers (2020-05-10T14:59:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.