Investigating Post-pretraining Representation Alignment for
Cross-Lingual Question Answering
- URL: http://arxiv.org/abs/2109.12028v1
- Date: Fri, 24 Sep 2021 15:32:45 GMT
- Title: Investigating Post-pretraining Representation Alignment for
Cross-Lingual Question Answering
- Authors: Fahim Faisal, Antonios Anastasopoulos
- Abstract summary: We investigate the capabilities of multilingually pre-trained language models on cross-lingual question answering systems.
We find that explicitly aligning the representations across languages with a post-hoc fine-tuning step generally leads to improved performance.
- Score: 20.4489424966613
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human knowledge is collectively encoded in the roughly 6500 languages spoken
around the world, but it is not distributed equally across languages. Hence,
for information-seeking question answering (QA) systems to adequately serve
speakers of all languages, they need to operate cross-lingually. In this work
we investigate the capabilities of multilingually pre-trained language models
on cross-lingual QA. We find that explicitly aligning the representations
across languages with a post-hoc fine-tuning step generally leads to improved
performance. We additionally investigate the effect of data size as well as the
language choice in this fine-tuning step, also releasing a dataset for
evaluating cross-lingual QA systems. Code and dataset are publicly available
here: https://github.com/ffaisal93/aligned_qa
Related papers
- Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models [62.91524967852552]
Large language models (LLMs) are typically multilingual due to pretraining on diverse multilingual corpora.
But can these models relate corresponding concepts across languages, effectively being crosslingual?
This study evaluates six state-of-the-art LLMs on inherently crosslingual tasks.
arXiv Detail & Related papers (2024-06-23T15:15:17Z) - LEIA: Facilitating Cross-lingual Knowledge Transfer in Language Models with Entity-based Data Augmentation [21.980770995466134]
We introduce LEIA, a language adaptation tuning method that utilizes Wikipedia entity names aligned across languages.
This method involves augmenting the target language corpus with English entity names and training the model using left-to-right language modeling.
arXiv Detail & Related papers (2024-02-18T07:24:34Z) - The Belebele Benchmark: a Parallel Reading Comprehension Dataset in 122 Language Variants [80.4837840962273]
We present Belebele, a dataset spanning 122 language variants.
This dataset enables the evaluation of text models in high-, medium-, and low-resource languages.
arXiv Detail & Related papers (2023-08-31T17:43:08Z) - PAXQA: Generating Cross-lingual Question Answering Examples at Training
Scale [53.92008514395125]
PAXQA (Projecting annotations for cross-lingual (x) QA) decomposes cross-lingual QA into two stages.
We propose a novel use of lexically-constrained machine translation, in which constrained entities are extracted from the parallel bitexts.
We show that models fine-tuned on these datasets outperform prior synthetic data generation models over several extractive QA datasets.
arXiv Detail & Related papers (2023-04-24T15:46:26Z) - Efficiently Aligned Cross-Lingual Transfer Learning for Conversational
Tasks using Prompt-Tuning [98.60739735409243]
Cross-lingual transfer of language models trained on high-resource languages like English has been widely studied for many NLP tasks.
We introduce XSGD for cross-lingual alignment pretraining, a parallel and large-scale multilingual conversation dataset.
To facilitate aligned cross-lingual representations, we develop an efficient prompt-tuning-based method for learning alignment prompts.
arXiv Detail & Related papers (2023-04-03T18:46:01Z) - CONCRETE: Improving Cross-lingual Fact-checking with Cross-lingual
Retrieval [73.48591773882052]
Most fact-checking approaches focus on English only due to the data scarcity issue in other languages.
We present the first fact-checking framework augmented with crosslingual retrieval.
We train the retriever with our proposed Crosslingual Inverse Cloze Task (XICT)
arXiv Detail & Related papers (2022-09-05T17:36:14Z) - MuCoT: Multilingual Contrastive Training for Question-Answering in
Low-resource Languages [4.433842217026879]
Multi-lingual BERT-based models (mBERT) are often used to transfer knowledge from high-resource languages to low-resource languages.
We augment the QA samples of the target language using translation and transliteration into other languages and use the augmented data to fine-tune an mBERT-based QA model.
Experiments on the Google ChAII dataset show that fine-tuning the mBERT model with translations from the same language family boosts the question-answering performance.
arXiv Detail & Related papers (2022-04-12T13:52:54Z) - Multilingual Transfer Learning for QA Using Translation as Data
Augmentation [13.434957024596898]
We explore strategies that improve cross-lingual transfer by bringing the multilingual embeddings closer in the semantic space.
We propose two novel strategies, language adversarial training and language arbitration framework, which significantly improve the (zero-resource) cross-lingual transfer performance.
Empirically, we show that the proposed models outperform the previous zero-shot baseline on the recently introduced multilingual MLQA and TyDiQA datasets.
arXiv Detail & Related papers (2020-12-10T20:29:34Z) - FILTER: An Enhanced Fusion Method for Cross-lingual Language
Understanding [85.29270319872597]
We propose an enhanced fusion method that takes cross-lingual data as input for XLM finetuning.
During inference, the model makes predictions based on the text input in the target language and its translation in the source language.
To tackle this issue, we propose an additional KL-divergence self-teaching loss for model training, based on auto-generated soft pseudo-labels for translated text in the target language.
arXiv Detail & Related papers (2020-09-10T22:42:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.