Dynamic Adaptive Spatio-temporal Graph Convolution for fMRI Modelling
- URL: http://arxiv.org/abs/2109.12517v1
- Date: Sun, 26 Sep 2021 07:19:47 GMT
- Title: Dynamic Adaptive Spatio-temporal Graph Convolution for fMRI Modelling
- Authors: Ahmed El-Gazzar, Rajat Mani Thomas, and Guido van Wingen
- Abstract summary: We propose a dynamic adaptivetemporal graph convolution (DASTGCN) model to overcome the shortcomings of pre-defined static correlation-based graph structures.
The proposed approach allows end-to-end inference of dynamic connections between brain regions via layer-wise graph structure learning module.
We evaluate our pipeline on the UKBiobank for age and gender classification tasks from resting-state functional scans.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The characterisation of the brain as a functional network in which the
connections between brain regions are represented by correlation values across
time series has been very popular in the last years. Although this
representation has advanced our understanding of brain function, it represents
a simplified model of brain connectivity that has a complex dynamic
spatio-temporal nature. Oversimplification of the data may hinder the merits of
applying advanced non-linear feature extraction algorithms. To this end, we
propose a dynamic adaptive spatio-temporal graph convolution (DAST-GCN) model
to overcome the shortcomings of pre-defined static correlation-based graph
structures. The proposed approach allows end-to-end inference of dynamic
connections between brain regions via layer-wise graph structure learning
module while mapping brain connectivity to a phenotype in a supervised learning
framework. This leverages the computational power of the model, data and
targets to represent brain connectivity, and could enable the identification of
potential biomarkers for the supervised target in question. We evaluate our
pipeline on the UKBiobank dataset for age and gender classification tasks from
resting-state functional scans and show that it outperforms currently adapted
linear and non-linear methods in neuroimaging. Further, we assess the
generalizability of the inferred graph structure by transferring the
pre-trained graph to an independent dataset for the same task. Our results
demonstrate the task-robustness of the graph against different scanning
parameters and demographics.
Related papers
- Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - DSAM: A Deep Learning Framework for Analyzing Temporal and Spatial Dynamics in Brain Networks [4.041732967881764]
Most rs-fMRI studies compute a single static functional connectivity matrix across brain regions of interest.
These approaches are at risk of oversimplifying brain dynamics and lack proper consideration of the goal at hand.
We propose a novel interpretable deep learning framework that learns goal-specific functional connectivity matrix directly from time series.
arXiv Detail & Related papers (2024-05-19T23:35:06Z) - DBGDGM: Dynamic Brain Graph Deep Generative Model [63.23390833353625]
Graphs are a natural representation of brain activity derived from functional magnetic imaging (fMRI) data.
It is well known that clusters of anatomical brain regions, known as functional connectivity networks (FCNs), encode temporal relationships which can serve as useful biomarkers for understanding brain function and dysfunction.
Previous works, however, ignore the temporal dynamics of the brain and focus on static graphs.
We propose a dynamic brain graph deep generative model (DBGDGM) which simultaneously clusters brain regions into temporally evolving communities and learns dynamic unsupervised node embeddings.
arXiv Detail & Related papers (2023-01-26T20:45:30Z) - DynDepNet: Learning Time-Varying Dependency Structures from fMRI Data
via Dynamic Graph Structure Learning [58.94034282469377]
We propose DynDepNet, a novel method for learning the optimal time-varying dependency structure of fMRI data induced by downstream prediction tasks.
Experiments on real-world fMRI datasets, for the task of sex classification, demonstrate that DynDepNet achieves state-of-the-art results.
arXiv Detail & Related papers (2022-09-27T16:32:11Z) - Contrastive Brain Network Learning via Hierarchical Signed Graph Pooling
Model [64.29487107585665]
Graph representation learning techniques on brain functional networks can facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
Here, we propose an interpretable hierarchical signed graph representation learning model to extract graph-level representations from brain functional networks.
In order to further improve the model performance, we also propose a new strategy to augment functional brain network data for contrastive learning.
arXiv Detail & Related papers (2022-07-14T20:03:52Z) - Relational representation learning with spike trains [0.0]
We present a model that allows us to learn spike train-based embeddings of knowledge graphs, requiring only one neuron per graph element by fully utilizing the temporal domain of spike patterns.
In general, the presented results show how relational knowledge can be integrated into spike-based systems, opening up the possibility of merging event-based computing and data to build powerful and energy efficient artificial intelligence applications and reasoning systems.
arXiv Detail & Related papers (2022-05-18T18:00:37Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
Graph mining on brain networks may facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
We propose a novel graph learning framework, known as Deep Signed Brain Networks (DSBN), with a signed graph encoder.
We validate our framework on clinical phenotype and neurodegenerative disease prediction tasks using two independent, publicly available datasets.
arXiv Detail & Related papers (2022-05-06T03:45:36Z) - Self-Supervised Graph Representation Learning for Neuronal Morphologies [75.38832711445421]
We present GraphDINO, a data-driven approach to learn low-dimensional representations of 3D neuronal morphologies from unlabeled datasets.
We show, in two different species and across multiple brain areas, that this method yields morphological cell type clusterings on par with manual feature-based classification by experts.
Our method could potentially enable data-driven discovery of novel morphological features and cell types in large-scale datasets.
arXiv Detail & Related papers (2021-12-23T12:17:47Z) - Brain dynamics via Cumulative Auto-Regressive Self-Attention [0.0]
We present a model that is considerably shallow than deep graph neural networks (GNNs)
Our model learns the autoregressive structure of individual time series and estimates directed connectivity graphs.
We demonstrate our results on a functional neuroimaging dataset classifying schizophrenia patients and controls.
arXiv Detail & Related papers (2021-11-01T21:50:35Z) - Learning Dynamic Graph Representation of Brain Connectome with
Spatio-Temporal Attention [33.049423523704824]
We propose STAGIN, a method for learning dynamic graph representation of the brain connectome with temporal attention.
Experiments on the HCP-Rest and the HCP-Task datasets demonstrate exceptional performance of our proposed method.
arXiv Detail & Related papers (2021-05-27T23:06:50Z) - Spatio-Temporal Graph Convolution for Resting-State fMRI Analysis [11.85489505372321]
We train a-temporal graph convolutional network (ST-GCN) on short sub-sequences of the BOLD time series to model the non-stationary nature of functional connectivity.
St-GCN is significantly more accurate than common approaches in predicting gender and age based on BOLD signals.
arXiv Detail & Related papers (2020-03-24T01:56:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.