Graph-Based Spatial-Temporal Convolutional Network for Vehicle
Trajectory Prediction in Autonomous Driving
- URL: http://arxiv.org/abs/2109.12764v1
- Date: Mon, 27 Sep 2021 02:20:38 GMT
- Title: Graph-Based Spatial-Temporal Convolutional Network for Vehicle
Trajectory Prediction in Autonomous Driving
- Authors: Zihao Sheng, Yunwen Xu, Shibei Xue, and Dewei Li
- Abstract summary: This paper proposes a graph-based spatial-temporal convolutional network ( GSTCN) to predict future trajectory distributions of all neighbor vehicles.
The spatial-temporal features are encoded and decoded by a gated recurrent unit (GRU) network to generate future trajectory distributions.
Our network is evaluated on two real-world freeway trajectory datasets: I-80 and US-101 in the Next Generation Simulation (NGSIM)
- Score: 2.6774008509841005
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Forecasting the trajectories of neighbor vehicles is a crucial step for
decision making and motion planning of autonomous vehicles. This paper proposes
a graph-based spatial-temporal convolutional network (GSTCN) to predict future
trajectory distributions of all neighbor vehicles using past trajectories. This
network tackles the spatial interactions using a graph convolutional network
(GCN), and captures the temporal features with a convolutional neural network
(CNN). The spatial-temporal features are encoded and decoded by a gated
recurrent unit (GRU) network to generate future trajectory distributions.
Besides, we propose a weighted adjacency matrix to describe the intensities of
mutual influence between vehicles, and the ablation study demonstrates the
effectiveness of our proposed scheme. Our network is evaluated on two
real-world freeway trajectory datasets: I-80 and US-101 in the Next Generation
Simulation (NGSIM).Comparisons in three aspects, including prediction errors,
model sizes, and inference speeds, show that our network can achieve
state-of-the-art performance.
Related papers
- ST-RetNet: A Long-term Spatial-Temporal Traffic Flow Prediction Method [1.8531577178922987]
We propose an innovative model called Spatial-Temporal Retentive Network (ST-RetNet)
At the spatial scale, we integrate a topological graph structure into Spatial Retentive Network(S-RetNet), utilizing an adaptive adjacency matrix to extract dynamic spatial features of the road network.
At the temporal scale, we propose the Temporal Retentive Network(T-RetNet), which has been demonstrated to excel in capturing long-term dependencies in traffic flow patterns.
arXiv Detail & Related papers (2024-07-13T03:52:32Z) - Adaptive Hierarchical SpatioTemporal Network for Traffic Forecasting [70.66710698485745]
We propose an Adaptive Hierarchical SpatioTemporal Network (AHSTN) to promote traffic forecasting.
AHSTN exploits the spatial hierarchy and modeling multi-scale spatial correlations.
Experiments on two real-world datasets show that AHSTN achieves better performance over several strong baselines.
arXiv Detail & Related papers (2023-06-15T14:50:27Z) - A Dynamic Temporal Self-attention Graph Convolutional Network for
Traffic Prediction [7.23135508361981]
This paper proposes a temporal self-attention graph convolutional network (DT-SGN) model which considers the adjacent matrix as a trainable attention score matrix.
Experiments demonstrate the superiority of our method over state-of-art model-driven model and data-driven models on real-world traffic datasets.
arXiv Detail & Related papers (2023-02-21T03:51:52Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - A Graph and Attentive Multi-Path Convolutional Network for Traffic
Prediction [16.28015945020806]
We propose a graph and attentive multi-path convolutional network (GAMCN) model to predict traffic conditions into the future.
Our model focuses on the spatial and temporal factors that impact traffic conditions.
Our model outperforms state-of-art traffic prediction models by up to 18.9% in terms of prediction errors and 23.4% in terms of prediction efficiency.
arXiv Detail & Related papers (2022-05-30T16:24:43Z) - LHNN: Lattice Hypergraph Neural Network for VLSI Congestion Prediction [70.31656245793302]
lattice hypergraph (LH-graph) is a novel graph formulation for circuits.
LHNN constantly achieves more than 35% improvements compared with U-nets and Pix2Pix on the F1 score.
arXiv Detail & Related papers (2022-03-24T03:31:18Z) - Vehicle Trajectory Prediction in City-scale Road Networks using a
Direction-based Sequence-to-Sequence Model with Spatiotemporal Attention
Mechanisms [1.027974860479791]
Tray prediction of vehicles at the city scale is of great importance to various location-based applications such as vehicle navigation, traffic management, and location-based recommendations.
Existing methods typically represent a trajectory as a sequence of grid cells, road segments or intention.
We propose a novel sequence-to-sequence model named D-LSTM, which represents each trajectory as a sequence of intersections and associated movement directions, and then feeds them into a LSTM encoder-decoder network for future generation.
arXiv Detail & Related papers (2021-06-21T15:14:28Z) - Spatio-temporal Modeling for Large-scale Vehicular Networks Using Graph
Convolutional Networks [110.80088437391379]
A graph-based framework called SMART is proposed to model and keep track of the statistics of vehicle-to-temporal (V2I) communication latency across a large geographical area.
We develop a graph reconstruction-based approach using a graph convolutional network integrated with a deep Q-networks algorithm.
Our results show that the proposed method can significantly improve both the accuracy and efficiency for modeling and the latency performance of large vehicular networks.
arXiv Detail & Related papers (2021-03-13T06:56:29Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
We propose an online path planning architecture that extends the model predictive control (MPC) formulation to consider future location uncertainties.
Our algorithm combines an object detection pipeline with a recurrent neural network (RNN) which infers the covariance of state estimates.
The robustness of our methods is validated on complex quadruped robot dynamics and can be generally applied to most robotic platforms.
arXiv Detail & Related papers (2020-07-28T07:34:30Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
We propose Geographic and Long term Temporal Graph Convolutional Recurrent Neural Network (GLT-GCRNN) for traffic forecasting.
In this work, we propose a novel framework for traffic forecasting that learns the rich interactions between roads sharing similar geographic or longterm temporal patterns.
arXiv Detail & Related papers (2020-04-23T03:50:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.