State preparation and evolution in quantum computing: a perspective from
Hamiltonian moments
- URL: http://arxiv.org/abs/2109.12790v2
- Date: Thu, 30 Sep 2021 18:42:35 GMT
- Title: State preparation and evolution in quantum computing: a perspective from
Hamiltonian moments
- Authors: Joseph C. Aulicino, Trevor Keen, Bo Peng
- Abstract summary: Recent efforts highlight the development of quantum algorithms based upon quantum computed Hamiltonian moments.
This tutorial review focuses on the typical ways of computing Hamiltonian moments using quantum hardware and improving the accuracy of the estimated state energies.
- Score: 5.774827369850958
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum algorithms on the noisy intermediate-scale quantum (NISQ) devices are
expected to simulate quantum systems that are classically intractable to
demonstrate quantum advantages. However, the non-negligible gate error on the
NISQ devices impedes the conventional quantum algorithms to be implemented.
Practical strategies usually exploit hybrid quantum classical algorithms to
demonstrate potentially useful applications of quantum computing in the NISQ
era. Among the numerous hybrid algorithms, recent efforts highlight the
development of quantum algorithms based upon quantum computed Hamiltonian
moments, $\langle \phi | \hat{\mathcal{H}}^n | \phi \rangle$ ($n=1,2,\cdots$),
with respect to quantum state $|\phi\rangle$. In this tutorial, we will give a
brief review of these quantum algorithms with focuses on the typical ways of
computing Hamiltonian moments using quantum hardware and improving the accuracy
of the estimated state energies based on the quantum computed moments.
Furthermore, we will present a tutorial to show how we can measure and compute
the Hamiltonian moments of a four-site Heisenberg model, and compute the energy
and magnetization of the model utilizing the imaginary time evolution in the
real IBM-Q NISQ hardware environment. Along this line, we will further discuss
some practical issues associated with these algorithms. We will conclude this
tutorial review by overviewing some possible developments and applications in
this direction in the near future.
Related papers
- Expanding Hardware-Efficiently Manipulable Hilbert Space via Hamiltonian
Embedding [9.219297088819634]
Many promising quantum applications depend on the efficient quantum simulation of an exponentially large sparse Hamiltonian.
In this paper, we propose a technique named Hamiltonian embedding.
This technique simulates a desired sparse Hamiltonian by embedding it into the evolution of a larger and more structured quantum system.
arXiv Detail & Related papers (2024-01-16T18:19:29Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Fighting noise with noise: a stochastic projective quantum eigensolver [0.0]
We present a novel approach to estimating physical observables which leads to a two order of magnitude reduction in the required sampling of the quantum state.
The method can be applied to excited-state calculations and simulation for general chemistry on quantum devices.
arXiv Detail & Related papers (2023-06-26T09:22:06Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Quantum Computing Quantum Monte Carlo [8.69884453265578]
We propose a hybrid quantum-classical algorithm that integrates quantum computing and quantum Monte Carlo.
Our work paves the way to solving practical problems with intermediatescale and early-fault tolerant quantum computers.
arXiv Detail & Related papers (2022-06-21T14:26:24Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
We study learnability of quantum circuit Born machines (QCBMs) and quantum generative adversarial networks (QGANs)
We first analyze the generalization ability of QCBMs and identify their superiorities when the quantum devices can directly access the target distribution.
Next, we prove how the generalization error bound of QGANs depends on the employed Ansatz, the number of qudits, and input states.
arXiv Detail & Related papers (2022-05-10T08:05:59Z) - Model-Independent Error Mitigation in Parametric Quantum Circuits and
Depolarizing Projection of Quantum Noise [1.5162649964542718]
Finding ground states and low-lying excitations of a given Hamiltonian is one of the most important problems in many fields of physics.
quantum computing on Noisy Intermediate-Scale Quantum (NISQ) devices offers the prospect to efficiently perform such computations.
Current quantum devices still suffer from inherent quantum noise.
arXiv Detail & Related papers (2021-11-30T16:08:01Z) - Towards understanding the power of quantum kernels in the NISQ era [79.8341515283403]
We show that the advantage of quantum kernels is vanished for large size datasets, few number of measurements, and large system noise.
Our work provides theoretical guidance of exploring advanced quantum kernels to attain quantum advantages on NISQ devices.
arXiv Detail & Related papers (2021-03-31T02:41:36Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Quantum simulation of open quantum systems in heavy-ion collisions [0.0]
We present a framework to simulate the dynamics of hard probes such as heavy quarks or jets in a hot, strongly-coupled quark-gluon plasma (QGP) on a quantum computer.
Our work demonstrates the feasibility of simulating open quantum systems on current and near-term quantum devices.
arXiv Detail & Related papers (2020-10-07T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.