An optimised deep spiking neural network architecture without gradients
- URL: http://arxiv.org/abs/2109.12813v1
- Date: Mon, 27 Sep 2021 05:59:12 GMT
- Title: An optimised deep spiking neural network architecture without gradients
- Authors: Yeshwanth Bethi, Ying Xu, Gregory Cohen, Andre van Schaik, Saeed
Afshar
- Abstract summary: We present an end-to-end trainable modular event-driven neural architecture that uses local synaptic and threshold adaptation rules.
The architecture represents a highly abstracted model of existing Spiking Neural Network (SNN) architectures.
- Score: 7.183775638408429
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present an end-to-end trainable modular event-driven neural architecture
that uses local synaptic and threshold adaptation rules to perform
transformations between arbitrary spatio-temporal spike patterns. The
architecture represents a highly abstracted model of existing Spiking Neural
Network (SNN) architectures. The proposed Optimized Deep Event-driven Spiking
neural network Architecture (ODESA) can simultaneously learn hierarchical
spatio-temporal features at multiple arbitrary time scales. ODESA performs
online learning without the use of error back-propagation or the calculation of
gradients. Through the use of simple local adaptive selection thresholds at
each node, the network rapidly learns to appropriately allocate its neuronal
resources at each layer for any given problem without using a real-valued error
measure. These adaptive selection thresholds are the central feature of ODESA,
ensuring network stability and remarkable robustness to noise as well as to the
selection of initial system parameters. Network activations are inherently
sparse due to a hard Winner-Take-All (WTA) constraint at each layer. We
evaluate the architecture on existing spatio-temporal datasets, including the
spike-encoded IRIS and TIDIGITS datasets, as well as a novel set of tasks based
on International Morse Code that we created. These tests demonstrate the
hierarchical spatio-temporal learning capabilities of ODESA. Through these
tests, we demonstrate ODESA can optimally solve practical and highly
challenging hierarchical spatio-temporal learning tasks with the minimum
possible number of computing nodes.
Related papers
- Systematic construction of continuous-time neural networks for linear dynamical systems [0.0]
We discuss a systematic approach to constructing neural architectures for modeling a subclass of dynamical systems.
We use a variant of continuous-time neural networks in which the output of each neuron evolves continuously as a solution of a first-order or second-order Ordinary Differential Equation (ODE)
Instead of deriving the network architecture and parameters from data, we propose a gradient-free algorithm to compute sparse architecture and network parameters directly from the given LTI system.
arXiv Detail & Related papers (2024-03-24T16:16:41Z) - Efficient Implementation of a Multi-Layer Gradient-Free Online-Trainable
Spiking Neural Network on FPGA [0.31498833540989407]
ODESA is the first network to have end-to-end multi-layer online local supervised training without using gradients.
This research shows that the network architecture and the online training of weights and thresholds can be implemented efficiently on a large scale in hardware.
arXiv Detail & Related papers (2023-05-31T00:34:15Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - A novel Deep Neural Network architecture for non-linear system
identification [78.69776924618505]
We present a novel Deep Neural Network (DNN) architecture for non-linear system identification.
Inspired by fading memory systems, we introduce inductive bias (on the architecture) and regularization (on the loss function)
This architecture allows for automatic complexity selection based solely on available data.
arXiv Detail & Related papers (2021-06-06T10:06:07Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
We present PredRNN, a new recurrent network for learning visual dynamics from historical context.
We show that our approach obtains highly competitive results on three standard datasets.
arXiv Detail & Related papers (2021-03-17T08:28:30Z) - Differentiable Neural Architecture Learning for Efficient Neural Network
Design [31.23038136038325]
We introduce a novel emph architecture parameterisation based on scaled sigmoid function.
We then propose a general emphiable Neural Architecture Learning (DNAL) method to optimize the neural architecture without the need to evaluate candidate neural networks.
arXiv Detail & Related papers (2021-03-03T02:03:08Z) - Wireless Localisation in WiFi using Novel Deep Architectures [4.541069830146568]
This paper studies the indoor localisation of WiFi devices based on a commodity chipset and standard channel sounding.
We present a novel shallow neural network (SNN) in which features are extracted from the channel state information corresponding to WiFi subcarriers received on different antennas.
arXiv Detail & Related papers (2020-10-16T22:48:29Z) - Neural Architecture Search For LF-MMI Trained Time Delay Neural Networks [61.76338096980383]
A range of neural architecture search (NAS) techniques are used to automatically learn two types of hyper- parameters of state-of-the-art factored time delay neural networks (TDNNs)
These include the DARTS method integrating architecture selection with lattice-free MMI (LF-MMI) TDNN training.
Experiments conducted on a 300-hour Switchboard corpus suggest the auto-configured systems consistently outperform the baseline LF-MMI TDNN systems.
arXiv Detail & Related papers (2020-07-17T08:32:11Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.