Path Based Hierarchical Clustering on Knowledge Graphs
- URL: http://arxiv.org/abs/2109.13178v1
- Date: Mon, 27 Sep 2021 16:42:43 GMT
- Title: Path Based Hierarchical Clustering on Knowledge Graphs
- Authors: Marcin Pietrasik, Marek Reformat
- Abstract summary: We present a novel approach for inducing a hierarchy of subject clusters.
Our method first constructs a tag hierarchy before assigning subjects to clusters on this hierarchy.
We quantitatively demonstrate our method's ability to induce a coherent cluster hierarchy on three real-world datasets.
- Score: 1.713291434132985
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Knowledge graphs have emerged as a widely adopted medium for storing
relational data, making methods for automatically reasoning with them highly
desirable. In this paper, we present a novel approach for inducing a hierarchy
of subject clusters, building upon our earlier work done in taxonomy induction.
Our method first constructs a tag hierarchy before assigning subjects to
clusters on this hierarchy. We quantitatively demonstrate our method's ability
to induce a coherent cluster hierarchy on three real-world datasets.
Related papers
- From Logits to Hierarchies: Hierarchical Clustering made Simple [16.132657141993548]
We show that a lightweight procedure implemented on top of pre-trained non-hierarchical clustering models outperforms models designed specifically for hierarchical clustering.
Our proposed approach is computationally efficient and applicable to any pre-trained clustering model that outputs logits, without requiring any fine-tuning.
arXiv Detail & Related papers (2024-10-10T12:27:45Z) - Incremental hierarchical text clustering methods: a review [49.32130498861987]
This study aims to analyze various hierarchical and incremental clustering techniques.
The main contribution of this research is the organization and comparison of the techniques used by studies published between 2010 and 2018 that aimed to texts documents clustering.
arXiv Detail & Related papers (2023-12-12T22:27:29Z) - Hierarchical clustering with dot products recovers hidden tree structure [53.68551192799585]
In this paper we offer a new perspective on the well established agglomerative clustering algorithm, focusing on recovery of hierarchical structure.
We recommend a simple variant of the standard algorithm, in which clusters are merged by maximum average dot product and not, for example, by minimum distance or within-cluster variance.
We demonstrate that the tree output by this algorithm provides a bona fide estimate of generative hierarchical structure in data, under a generic probabilistic graphical model.
arXiv Detail & Related papers (2023-05-24T11:05:12Z) - Generating Hierarchical Explanations on Text Classification Without
Connecting Rules [14.624434065904232]
We argue that the connecting rule as an additional prior may undermine the ability to reflect the model decision process faithfully.
We propose to generate hierarchical explanations without the connecting rule and introduce a framework for generating hierarchical clusters.
arXiv Detail & Related papers (2022-10-24T14:11:23Z) - Inducing a hierarchy for multi-class classification problems [11.58041597483471]
In applications where categorical labels follow a natural hierarchy, classification methods that exploit the label structure often outperform those that do not.
In this paper, we investigate a class of methods that induce a hierarchy that can similarly improve classification performance over flat classifiers.
We demonstrate the effectiveness of the class of methods both for discovering a latent hierarchy and for improving accuracy in principled simulation settings and three real data applications.
arXiv Detail & Related papers (2021-02-20T05:40:42Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z) - Interactive Steering of Hierarchical Clustering [30.371250297444703]
We present an interactive steering method to visually supervise constrained hierarchical clustering by utilizing both public knowledge (e.g., Wikipedia) and private knowledge from users.
The novelty of our approach includes 1) automatically constructing constraints for hierarchical clustering using knowledge (knowledge-driven) and intrinsic data distribution (data-driven)
To clearly convey the hierarchical clustering results, an uncertainty-aware tree visualization has been developed to enable users to quickly locate the most uncertain sub-hierarchies.
arXiv Detail & Related papers (2020-09-21T05:26:07Z) - Exploring the Hierarchy in Relation Labels for Scene Graph Generation [75.88758055269948]
The proposed method can improve several state-of-the-art baselines by a large margin (up to $33%$ relative gain) in terms of Recall@50.
Experiments show that the proposed simple yet effective method can improve several state-of-the-art baselines by a large margin.
arXiv Detail & Related papers (2020-09-12T17:36:53Z) - Structured Graph Learning for Clustering and Semi-supervised
Classification [74.35376212789132]
We propose a graph learning framework to preserve both the local and global structure of data.
Our method uses the self-expressiveness of samples to capture the global structure and adaptive neighbor approach to respect the local structure.
Our model is equivalent to a combination of kernel k-means and k-means methods under certain condition.
arXiv Detail & Related papers (2020-08-31T08:41:20Z) - Hierarchical Image Classification using Entailment Cone Embeddings [68.82490011036263]
We first inject label-hierarchy knowledge into an arbitrary CNN-based classifier.
We empirically show that availability of such external semantic information in conjunction with the visual semantics from images boosts overall performance.
arXiv Detail & Related papers (2020-04-02T10:22:02Z) - Hierarchical Correlation Clustering and Tree Preserving Embedding [3.821323038670061]
We propose a hierarchical correlation clustering method that extends the well-known correlation clustering.
In the following, we study unsupervised representation learning with such hierarchical correlation clustering.
arXiv Detail & Related papers (2020-02-18T17:44:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.