Design of quantum optical experiments with logic artificial intelligence
- URL: http://arxiv.org/abs/2109.13273v1
- Date: Mon, 27 Sep 2021 18:01:08 GMT
- Title: Design of quantum optical experiments with logic artificial intelligence
- Authors: Alba Cervera-Lierta, Mario Krenn, Al\'an Aspuru-Guzik
- Abstract summary: We propose the use of logic AI for the design of optical quantum experiments.
We show how to map into a SAT problem the experimental preparation of an arbitrary quantum state.
We find that the use of logic AI improves significantly the resolution of this problem.
- Score: 1.6114012813668934
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Logic artificial intelligence (AI) is a subfield of AI where variables can
take two defined arguments, True or False, and are arranged in clauses that
follow the rules of formal logic. Several problems that span from physical
systems to mathematical conjectures can be encoded into these clauses and be
solved by checking their satisfiability (SAT). Recently, SAT solvers have
become a sophisticated and powerful computational tool capable, among other
things, of solving long-standing mathematical conjectures. In this work, we
propose the use of logic AI for the design of optical quantum experiments. We
show how to map into a SAT problem the experimental preparation of an arbitrary
quantum state and propose a logic-based algorithm, called Klaus, to find an
interpretable representation of the photonic setup that generates it. We
compare the performance of Klaus with the state-of-the-art algorithm for this
purpose based on continuous optimization. We also combine both logic and
numeric strategies to find that the use of logic AI improves significantly the
resolution of this problem, paving the path to develop more formal-based
approaches in the context of quantum physics experiments.
Related papers
- An encoding of argumentation problems using quadratic unconstrained binary optimization [1.104960878651584]
We develop a way to encode several NP-Complete problems in Abstract Argumentation to Quadratic Unconstrained Binary Optimization problems.
With the QUBO formulation, exploiting new computing architectures, such as Quantum and Digital Annealers, is possible.
We performed tests to prove the correctness and applicability of classical problems in Argumentation and enforcement of argument sets.
arXiv Detail & Related papers (2024-09-09T11:29:46Z) - Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
Recently proposed quantum algorithm arXiv:2206.14999 is based on semidefinite programming (SDP)
We generalize the SDP-inspired quantum algorithm to sum-of-squares.
Our results show that our algorithm is suitable for large problems and approximate the best known classicals.
arXiv Detail & Related papers (2024-08-14T19:04:13Z) - Artifical intelligence and inherent mathematical difficulty [0.0]
We first present an updated version of a traditional argument that limitative results from computability and complexity theory show that proof discovery is an inherently difficult problem.
We then illustrate how several recent applications of artificial intelligence-inspired methods do indeed raise novel questions about the nature of mathematical proof.
arXiv Detail & Related papers (2024-08-01T20:08:31Z) - A Parallel and Distributed Quantum SAT Solver Based on Entanglement and
Quantum Teleportation [1.5201992393140886]
We develop a parallel quantum SAT solver, which reduces the time complexity in each iteration from linear time O(m) to constant time O(1) by utilising extra entangled qubits.
We have proved the correctness of our approaches and demonstrated them in simulations.
arXiv Detail & Related papers (2023-08-07T06:52:06Z) - A hybrid Quantum proposal to deal with 3-SAT problem [75.38606213726906]
This paper presents and describes a hybrid quantum computing strategy for solving 3-SAT problems.
The performance of this approximation has been tested over a set of representative scenarios when dealing with 3-SAT from the quantum computing perspective.
arXiv Detail & Related papers (2023-06-07T12:19:22Z) - A Quantum Algorithm for Computing All Diagnoses of a Switching Circuit [73.70667578066775]
Faults are by nature while most man-made systems, and especially computers, work deterministically.
This paper provides such a connecting via quantum information theory which is an intuitive approach as quantum physics obeys probability laws.
arXiv Detail & Related papers (2022-09-08T17:55:30Z) - On the Configuration of More and Less Expressive Logic Programs [11.331373810571993]
We consider two well-known model-based AI methodologies, SAT and ASP, define a number of syntactic features that may characterise their inputs.
Results of a wide experimental analysis involving SAT and ASP domains, taken from respective competitions, show the different advantages that can be obtained by using input reformulation and configuration.
arXiv Detail & Related papers (2022-03-02T10:55:35Z) - The Logic of Quantum Programs [77.34726150561087]
We present a logical calculus for reasoning about information flow in quantum programs.
In particular we introduce a dynamic logic that is capable of dealing with quantum measurements, unitary evolutions and entanglements in compound quantum systems.
arXiv Detail & Related papers (2021-09-14T16:08:37Z) - Transformer-based Machine Learning for Fast SAT Solvers and Logic
Synthesis [63.53283025435107]
CNF-based SAT and MaxSAT solvers are central to logic synthesis and verification systems.
In this work, we propose a one-shot model derived from the Transformer architecture to solve the MaxSAT problem.
arXiv Detail & Related papers (2021-07-15T04:47:35Z) - Polynomial unconstrained binary optimisation inspired by optical
simulation [52.11703556419582]
We propose an algorithm inspired by optical coherent Ising machines to solve the problem of unconstrained binary optimization.
We benchmark the proposed algorithm against existing PUBO algorithms, and observe its superior performance.
The application of our algorithm to protein folding and quantum chemistry problems sheds light on the shortcomings of approxing the electronic structure problem by a PUBO problem.
arXiv Detail & Related papers (2021-06-24T16:39:31Z) - ACSS-q: Algorithmic complexity for short strings via quantum accelerated
approach [1.4873907857806357]
We present a quantum circuit for estimating algorithmic complexity using the coding theorem method.
As a use-case, an application framework for protein-protein interaction based on algorithmic complexity is proposed.
arXiv Detail & Related papers (2020-09-18T14:41:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.