Flexibility of the factorized form of the unitary coupled cluster ansatz
- URL: http://arxiv.org/abs/2109.13461v1
- Date: Tue, 28 Sep 2021 03:24:12 GMT
- Title: Flexibility of the factorized form of the unitary coupled cluster ansatz
- Authors: Jia Chen, Hai-Ping Cheng, and J. K. Freericks
- Abstract summary: We show that the factorized form of the unitary coupled cluster ansatz is quite flexible.
The variational minimization of the energy often allows simpler factorized unitary coupled cluster approximations to achieve high accuracy.
- Score: 6.193126593753756
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The factorized form of the unitary coupled cluster ansatz is a popular state
preparation ansatz for electronic structure calculations of molecules on
quantum computers. It often is viewed as an approximation (based on the Trotter
product formula) for the conventional unitary coupled cluster operator. In this
work, we show that the factorized form is quite flexible, allowing one to range
from conventional configuration interaction, to conventional unitary coupled
cluster, to efficient approximations that lie in between these two. The
variational minimization of the energy often allows simpler factorized unitary
coupled cluster approximations to achieve high accuracy, even if they do not
accurately approximate the Trotter product formula. This is similar to how
quantum approximate optimization algorithms can achieve high accuracy with a
small number of levels.
Related papers
- Linear Self-Attention Approximation via Trainable Feedforward Kernel [77.34726150561087]
In pursuit of faster computation, Efficient Transformers demonstrate an impressive variety of approaches.
We aim to expand the idea of trainable kernel methods to approximate the self-attention mechanism of the Transformer architecture.
arXiv Detail & Related papers (2022-11-08T08:14:11Z) - Dual Exponential Coupled Cluster Theory: Unitary Adaptation,
Implementation in the Variational Quantum Eigensolver Framework and Pilot
Applications [0.0]
We have developed a unitary variant of a double exponential coupled cluster theory.
The method relies upon the nontrivial action of a unitary, containing a set of rank-two scattering operators.
We have shown that all our schemes can perform uniformly well throughout the molecular potential energy surface.
arXiv Detail & Related papers (2022-07-12T05:10:58Z) - Say NO to Optimization: A Non-Orthogonal Quantum Eigensolver [0.0]
A balanced description of both static and dynamic correlations in electronic systems with nearly degenerate low-lying states presents a challenge for multi-configurational methods on classical computers.
We present here a quantum algorithm utilizing the action of correlating cluster operators to provide high-quality wavefunction ans"atze.
arXiv Detail & Related papers (2022-05-18T16:20:36Z) - Operator relationship between conventional coupled cluster and unitary
coupled cluster [0.0]
We show how one can use the operator manipulations given by the exponential disentangling identity and the Hadamard lemma to relate the factorized form of the unitary coupled-cluster approximation to a factorized form of the conventional coupled cluster approximation.
This approach is daunting to carry out by hand, but can be automated on a computer for small enough systems.
arXiv Detail & Related papers (2022-01-28T01:30:53Z) - Generalization Metrics for Practical Quantum Advantage in Generative
Models [68.8204255655161]
Generative modeling is a widely accepted natural use case for quantum computers.
We construct a simple and unambiguous approach to probe practical quantum advantage for generative modeling by measuring the algorithm's generalization performance.
Our simulation results show that our quantum-inspired models have up to a $68 times$ enhancement in generating unseen unique and valid samples.
arXiv Detail & Related papers (2022-01-21T16:35:35Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Unitary Selective Coupled-Cluster Method [0.8258451067861933]
Simulating molecules using the Variational Quantum Eigensolver method is one of the promising applications for NISQ-era quantum computers.
Designing an efficient ansatz to represent the electronic wave function is crucial in such simulations.
We present a unitary selective coupled-cluster method, a way to construct a unitary coupled-cluster ansatz iteratively using a selection procedure with excitations up to fourth order.
arXiv Detail & Related papers (2021-09-26T17:02:16Z) - Compressing Many-Body Fermion Operators Under Unitary Constraints [0.6445605125467573]
We introduce a numerical algorithm for performing factorization that has an complexity no worse than single particle basis transformations of the two-body operators.
As an application of this numerical procedure, we demonstrate that our protocol can be used to approximate generic unitary coupled cluster operators.
arXiv Detail & Related papers (2021-09-10T17:42:18Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z) - Optimal radial basis for density-based atomic representations [58.720142291102135]
We discuss how to build an adaptive, optimal numerical basis that is chosen to represent most efficiently the structural diversity of the dataset at hand.
For each training dataset, this optimal basis is unique, and can be computed at no additional cost with respect to the primitive basis.
We demonstrate that this construction yields representations that are accurate and computationally efficient.
arXiv Detail & Related papers (2021-05-18T17:57:08Z) - Clustering Ensemble Meets Low-rank Tensor Approximation [50.21581880045667]
This paper explores the problem of clustering ensemble, which aims to combine multiple base clusterings to produce better performance than that of the individual one.
We propose a novel low-rank tensor approximation-based method to solve the problem from a global perspective.
Experimental results over 7 benchmark data sets show that the proposed model achieves a breakthrough in clustering performance, compared with 12 state-of-the-art methods.
arXiv Detail & Related papers (2020-12-16T13:01:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.