Active Learning for Argument Mining: A Practical Approach
- URL: http://arxiv.org/abs/2109.13611v1
- Date: Tue, 28 Sep 2021 10:58:47 GMT
- Title: Active Learning for Argument Mining: A Practical Approach
- Authors: Nikolai Solmsdorf, Dietrich Trautmann, Hinrich Sch\"utze
- Abstract summary: We show that Active Learning considerably decreases the effort necessary to get good deep learning performance on the task of Argument Unit Recognition and Classification (AURC)
Active Learning reduces the amount of data necessary for the training of machine learning models by querying the most informative samples for annotation and therefore is a promising method for resource creation.
- Score: 2.535271349350579
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite considerable recent progress, the creation of well-balanced and
diverse resources remains a time-consuming and costly challenge in Argument
Mining. Active Learning reduces the amount of data necessary for the training
of machine learning models by querying the most informative samples for
annotation and therefore is a promising method for resource creation. In a
large scale comparison of several Active Learning methods, we show that Active
Learning considerably decreases the effort necessary to get good deep learning
performance on the task of Argument Unit Recognition and Classification (AURC).
Related papers
- Unlearnable Algorithms for In-context Learning [36.895152458323764]
In this paper, we focus on efficient unlearning methods for the task adaptation phase of a pretrained large language model.
We observe that an LLM's ability to do in-context learning for task adaptation allows for efficient exact unlearning of task adaptation training data.
We propose a new holistic measure of unlearning cost which accounts for varying inference costs.
arXiv Detail & Related papers (2024-02-01T16:43:04Z) - Compute-Efficient Active Learning [0.0]
Active learning aims at reducing labeling costs by selecting the most informative samples from an unlabeled dataset.
Traditional active learning process often demands extensive computational resources, hindering scalability and efficiency.
We present a novel method designed to alleviate the computational burden associated with active learning on massive datasets.
arXiv Detail & Related papers (2024-01-15T12:32:07Z) - Responsible Active Learning via Human-in-the-loop Peer Study [88.01358655203441]
We propose a responsible active learning method, namely Peer Study Learning (PSL), to simultaneously preserve data privacy and improve model stability.
We first introduce a human-in-the-loop teacher-student architecture to isolate unlabelled data from the task learner (teacher) on the cloud-side.
During training, the task learner instructs the light-weight active learner which then provides feedback on the active sampling criterion.
arXiv Detail & Related papers (2022-11-24T13:18:27Z) - Learning from Few Examples: A Summary of Approaches to Few-Shot Learning [3.6930948691311016]
Few-Shot Learning refers to the problem of learning the underlying pattern in the data just from a few training samples.
Deep learning solutions suffer from data hunger and extensively high computation time and resources.
Few-shot learning that could drastically reduce the turnaround time of building machine learning applications emerges as a low-cost solution.
arXiv Detail & Related papers (2022-03-07T23:15:21Z) - What Makes Good Contrastive Learning on Small-Scale Wearable-based
Tasks? [59.51457877578138]
We study contrastive learning on the wearable-based activity recognition task.
This paper presents an open-source PyTorch library textttCL-HAR, which can serve as a practical tool for researchers.
arXiv Detail & Related papers (2022-02-12T06:10:15Z) - Learnability of Learning Performance and Its Application to Data
Valuation [11.78594243870616]
In most machine learning (ML) tasks, evaluating learning performance on a given dataset requires intensive computation.
The ability to efficiently estimate learning performance may benefit a wide spectrum of applications, such as active learning, data quality management, and data valuation.
Recent empirical studies show that for many common ML models, one can accurately learn a parametric model that predicts learning performance for any given input datasets using a small amount of samples.
arXiv Detail & Related papers (2021-07-13T18:56:04Z) - Few-Cost Salient Object Detection with Adversarial-Paced Learning [95.0220555274653]
This paper proposes to learn the effective salient object detection model based on the manual annotation on a few training images only.
We name this task as the few-cost salient object detection and propose an adversarial-paced learning (APL)-based framework to facilitate the few-cost learning scenario.
arXiv Detail & Related papers (2021-04-05T14:15:49Z) - Active Learning for Sequence Tagging with Deep Pre-trained Models and
Bayesian Uncertainty Estimates [52.164757178369804]
Recent advances in transfer learning for natural language processing in conjunction with active learning open the possibility to significantly reduce the necessary annotation budget.
We conduct an empirical study of various Bayesian uncertainty estimation methods and Monte Carlo dropout options for deep pre-trained models in the active learning framework.
We also demonstrate that to acquire instances during active learning, a full-size Transformer can be substituted with a distilled version, which yields better computational performance.
arXiv Detail & Related papers (2021-01-20T13:59:25Z) - Bayesian active learning for production, a systematic study and a
reusable library [85.32971950095742]
In this paper, we analyse the main drawbacks of current active learning techniques.
We do a systematic study on the effects of the most common issues of real-world datasets on the deep active learning process.
We derive two techniques that can speed up the active learning loop such as partial uncertainty sampling and larger query size.
arXiv Detail & Related papers (2020-06-17T14:51:11Z) - Confident Coreset for Active Learning in Medical Image Analysis [57.436224561482966]
We propose a novel active learning method, confident coreset, which considers both uncertainty and distribution for effectively selecting informative samples.
By comparative experiments on two medical image analysis tasks, we show that our method outperforms other active learning methods.
arXiv Detail & Related papers (2020-04-05T13:46:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.