Certified Everlasting Zero-Knowledge Proof for QMA
- URL: http://arxiv.org/abs/2109.14163v1
- Date: Wed, 29 Sep 2021 03:05:44 GMT
- Title: Certified Everlasting Zero-Knowledge Proof for QMA
- Authors: Taiga Hiroka, Tomoyuki Morimae, Ryo Nishimaki, Takashi Yamakawa
- Abstract summary: We introduce a novel compromise, which we call the certified zero-knowledge proof for QMA.
It is a computational zero-knowledge proof for QMA, but the verifier issues a classical certificate that shows that the verifier has deleted its quantum information.
We construct a certified everlasting zero-knowledge proof for QMA.
- Score: 10.973034520723957
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In known constructions of classical zero-knowledge protocols for NP, either
of zero-knowledge or soundness holds only against computationally bounded
adversaries. Indeed, achieving both statistical zero-knowledge and statistical
soundness at the same time with classical verifier is impossible for NP unless
the polynomial-time hierarchy collapses, and it is also believed to be
impossible even with a quantum verifier. In this work, we introduce a novel
compromise, which we call the certified everlasting zero-knowledge proof for
QMA. It is a computational zero-knowledge proof for QMA, but the verifier
issues a classical certificate that shows that the verifier has deleted its
quantum information. If the certificate is valid, even unbounded malicious
verifier can no longer learn anything beyond the validity of the statement. We
construct a certified everlasting zero-knowledge proof for QMA. For the
construction, we introduce a new quantum cryptographic primitive, which we call
commitment with statistical binding and certified everlasting hiding, where the
hiding property becomes statistical once the receiver has issued a valid
certificate that shows that the receiver has deleted the committed information.
We construct commitment with statistical binding and certified everlasting
hiding from quantum encryption with certified deletion by Broadbent and Islam
[TCC 2020] (in a black box way), and then combine it with the quantum
sigma-protocol for QMA by Broadbent and Grilo [FOCS 2020] to construct the
certified everlasting zero-knowledge proof for QMA. Our constructions are
secure in the quantum random oracle model. Commitment with statistical binding
and certified everlasting hiding itself is of independent interest, and there
will be many other useful applications beyond zero-knowledge.
Related papers
- Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
A test of quantumness is a protocol that allows a classical verifier to certify (only) that a prover is not classical.
We show that tests of quantumness that follow a certain template, which captures recent proposals such as (Kalai et al., 2022) can in fact do much more.
Namely, the same protocols can be used for certifying a qubit, a building-block that stands at the heart of applications such as certifiable randomness and classical delegation of quantum computation.
arXiv Detail & Related papers (2023-03-02T14:18:17Z) - Making Quantum Local Verifiers Simulable with Potential Applications to
Zero-Knowledge [1.5787663289343947]
We show that any local quantum verifier can be made simulable with a minor reduction in completeness and soundness.
We conjecture that applying the proposed succinct quantum argument of Chen and Movassagh to a simulable local verifier is indeed zero-knowledge.
arXiv Detail & Related papers (2022-09-22T06:00:38Z) - Cryptography with Certified Deletion [16.354530084834863]
We propose a new, unifying framework that yields an array of cryptographic primitives with certified deletion.
primitives enable a party in possession of a quantum ciphertext to generate a classical certificate that the encrypted plaintext has been information-theoretically deleted.
arXiv Detail & Related papers (2022-07-05T00:48:06Z) - Quantum Proofs of Deletion for Learning with Errors [91.3755431537592]
We construct the first fully homomorphic encryption scheme with certified deletion.
Our main technical ingredient is an interactive protocol by which a quantum prover can convince a classical verifier that a sample from the Learning with Errors distribution in the form of a quantum state was deleted.
arXiv Detail & Related papers (2022-03-03T10:07:32Z) - Depth-efficient proofs of quantumness [77.34726150561087]
A proof of quantumness is a type of challenge-response protocol in which a classical verifier can efficiently certify quantum advantage of an untrusted prover.
In this paper, we give two proof of quantumness constructions in which the prover need only perform constant-depth quantum circuits.
arXiv Detail & Related papers (2021-07-05T17:45:41Z) - Post-Quantum Succinct Arguments: Breaking the Quantum Rewinding Barrier [73.70426431502803]
We prove that Kilian's four-message succinct argument system is post-quantum secure in the standard model.
This yields the first post-quantum succinct argument system from any falsifiable assumption.
arXiv Detail & Related papers (2021-03-15T05:09:17Z) - On the Concurrent Composition of Quantum Zero-Knowledge [11.09538194395154]
We study the notion of zero-knowledge secure against quantum-time verifiers (referred to as quantum zero-knowledge) in the concurrent composition setting.
Our result yields a proof of quantum knowledge system for QMA with better parameters than prior works.
arXiv Detail & Related papers (2020-12-05T23:09:29Z) - A Black-Box Approach to Post-Quantum Zero-Knowledge in Constant Rounds [12.525959293825318]
We construct a constant round interactive proof for NP that satisfies statistical soundness and black-box $epsilon$-zero-knowledge against quantum attacks.
At the heart of our results is a new quantum rewinding technique that enables a simulator to extract a committed message of a malicious verifier.
arXiv Detail & Related papers (2020-11-05T05:40:05Z) - Secure Two-Party Quantum Computation Over Classical Channels [63.97763079214294]
We consider the setting where the two parties (a classical Alice and a quantum Bob) can communicate only via a classical channel.
We show that it is in general impossible to realize a two-party quantum functionality with black-box simulation in the case of malicious quantum adversaries.
We provide a compiler that takes as input a classical proof of quantum knowledge (PoQK) protocol for a QMA relation R and outputs a zero-knowledge PoQK for R that can be verified by classical parties.
arXiv Detail & Related papers (2020-10-15T17:55:31Z) - Using Quantum Metrological Bounds in Quantum Error Correction: A Simple
Proof of the Approximate Eastin-Knill Theorem [77.34726150561087]
We present a proof of the approximate Eastin-Knill theorem, which connects the quality of a quantum error-correcting code with its ability to achieve a universal set of logical gates.
Our derivation employs powerful bounds on the quantum Fisher information in generic quantum metrological protocols.
arXiv Detail & Related papers (2020-04-24T17:58:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.