Unsupervised Domain Adaptation in Semantic Segmentation Based on Pixel
Alignment and Self-Training
- URL: http://arxiv.org/abs/2109.14219v1
- Date: Wed, 29 Sep 2021 06:56:57 GMT
- Title: Unsupervised Domain Adaptation in Semantic Segmentation Based on Pixel
Alignment and Self-Training
- Authors: Hexin Dong, Fei Yu, Jie Zhao, Bin Dong and Li Zhang
- Abstract summary: Pixel alignment transfers ceT1 scans to hrT2 modality, helping to reduce domain shift in the training segmentation model.
Self-training adapts the decision boundary of the segmentation network to fit the distribution of hrT2 scans.
- Score: 13.63879014979211
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes an unsupervised cross-modality domain adaptation approach
based on pixel alignment and self-training. Pixel alignment transfers ceT1
scans to hrT2 modality, helping to reduce domain shift in the training
segmentation model. Self-training adapts the decision boundary of the
segmentation network to fit the distribution of hrT2 scans. Experiment results
show that PAST has outperformed the non-UDA baseline significantly, and it
received rank-2 on CrossMoDA validation phase Leaderboard with a mean Dice
score of 0.8395.
Related papers
- MS-MT: Multi-Scale Mean Teacher with Contrastive Unpaired Translation
for Cross-Modality Vestibular Schwannoma and Cochlea Segmentation [11.100048696665496]
unsupervised domain adaptation (UDA) methods have achieved promising cross-modality segmentation performance.
We propose a multi-scale self-ensembling based UDA framework for automatic segmentation of two key brain structures.
Our method demonstrates promising segmentation performance with a mean Dice score of 83.8% and 81.4%.
arXiv Detail & Related papers (2023-03-28T08:55:00Z) - Exploring Consistency in Cross-Domain Transformer for Domain Adaptive
Semantic Segmentation [51.10389829070684]
Domain gap can cause discrepancies in self-attention.
Due to this gap, the transformer attends to spurious regions or pixels, which deteriorates accuracy on the target domain.
We propose adaptation on attention maps with cross-domain attention layers.
arXiv Detail & Related papers (2022-11-27T02:40:33Z) - Unsupervised Cross-Modality Domain Adaptation for Vestibular Schwannoma
Segmentation and Koos Grade Prediction based on Semi-Supervised Contrastive
Learning [1.5953825926551457]
unsupervised domain adaptation framework for cross-modality vestibular schwannoma (VS) and cochlea segmentation and Koos grade prediction.
nnU-Net model is utilized for VS and cochlea segmentation, while a semi-supervised contrastive learning pre-train approach is employed to improve the model performance.
Our method received rank 4 in task1 with a mean Dice score of 0.8394 and rank 2 in task2 with Macro-Average Mean Square Error of 0.3941.
arXiv Detail & Related papers (2022-10-09T13:12:20Z) - Enhancing Data Diversity for Self-training Based Unsupervised
Cross-modality Vestibular Schwannoma and Cochlea Segmentation [7.327638441664658]
We present an approach for VS and cochlea segmentation in an unsupervised domain adaptation setting.
We first develop a cross-site cross-modality unpaired image translation strategy to enrich the diversity of the synthesized data.
Then, we devise a rule-based offline augmentation technique to further minimize the domain gap.
Lastly, we adopt a self-configuring segmentation framework empowered by self-training to obtain the final results.
arXiv Detail & Related papers (2022-09-23T22:26:51Z) - UniDAformer: Unified Domain Adaptive Panoptic Segmentation Transformer
via Hierarchical Mask Calibration [49.16591283724376]
We design UniDAformer, a unified domain adaptive panoptic segmentation transformer that is simple but can achieve domain adaptive instance segmentation and semantic segmentation simultaneously within a single network.
UniDAformer introduces Hierarchical Mask (HMC) that rectifies inaccurate predictions at the level of regions, superpixels and annotated pixels via online self-training on the fly.
It has three unique features: 1) it enables unified domain adaptive panoptic adaptation; 2) it mitigates false predictions and improves domain adaptive panoptic segmentation effectively; 3) it is end-to-end trainable with a much simpler training and inference pipeline.
arXiv Detail & Related papers (2022-06-30T07:32:23Z) - Distribution Regularized Self-Supervised Learning for Domain Adaptation
of Semantic Segmentation [3.284878354988896]
This paper proposes a pixel-level distribution regularization scheme (DRSL) for self-supervised domain adaptation of semantic segmentation.
In a typical setting, the classification loss forces the semantic segmentation model to greedily learn the representations that capture inter-class variations.
We capture pixel-level intra-class variations through class-aware multi-modal distribution learning.
arXiv Detail & Related papers (2022-06-20T09:52:49Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
Semi-supervised domain adaptation (SSDA) is a challenging problem requiring methods to overcome both 1) overfitting towards poorly annotated data and 2) distribution shift across domains.
We introduce an adaptive structure learning method to regularize the cooperation of SSL and DA.
arXiv Detail & Related papers (2021-12-12T06:11:16Z) - Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training
for Road Segmentation of Remote Sensing Images [93.50240389540252]
Road segmentation from remote sensing images is a challenging task with wide ranges of application potentials.
We propose a novel stagewise domain adaptation model called RoadDA to address the domain shift (DS) issue in this field.
Experiment results on two benchmarks demonstrate that RoadDA can efficiently reduce the domain gap and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2021-08-28T09:29:14Z) - DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic
Segmentation [97.74059510314554]
Unsupervised domain adaptation (UDA) for semantic segmentation aims to adapt a segmentation model trained on the labeled source domain to the unlabeled target domain.
Existing methods try to learn domain invariant features while suffering from large domain gaps.
We propose a novel Dual Soft-Paste (DSP) method in this paper.
arXiv Detail & Related papers (2021-07-20T16:22:40Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
In this paper, we propose a novel Bidirectional Global-to-Local (BiGL) adaptation framework under a UDA scheme.
Specifically, a bidirectional image synthesis and segmentation module is proposed to segment the brain tumor.
The proposed method outperforms several state-of-the-art unsupervised domain adaptation methods by a large margin.
arXiv Detail & Related papers (2021-05-17T10:11:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.