USIS: Unsupervised Semantic Image Synthesis
- URL: http://arxiv.org/abs/2109.14715v1
- Date: Wed, 29 Sep 2021 20:48:41 GMT
- Title: USIS: Unsupervised Semantic Image Synthesis
- Authors: George Eskandar, Mohamed Abdelsamad, Karim Armanious, Bin Yang
- Abstract summary: We propose a new Unsupervised paradigm for Semantic Image Synthesis (USIS)
USIS learns to output images with visually separable semantic classes using a self-supervised segmentation loss.
In order to match the color and texture distribution of real images without losing high-frequency information, we propose to use whole image wavelet-based discrimination.
- Score: 9.613134538472801
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semantic Image Synthesis (SIS) is a subclass of image-to-image translation
where a photorealistic image is synthesized from a segmentation mask. SIS has
mostly been addressed as a supervised problem. However, state-of-the-art
methods depend on a huge amount of labeled data and cannot be applied in an
unpaired setting. On the other hand, generic unpaired image-to-image
translation frameworks underperform in comparison, because they color-code
semantic layouts and feed them to traditional convolutional networks, which
then learn correspondences in appearance instead of semantic content. In this
initial work, we propose a new Unsupervised paradigm for Semantic Image
Synthesis (USIS) as a first step towards closing the performance gap between
paired and unpaired settings. Notably, the framework deploys a SPADE generator
that learns to output images with visually separable semantic classes using a
self-supervised segmentation loss. Furthermore, in order to match the color and
texture distribution of real images without losing high-frequency information,
we propose to use whole image wavelet-based discrimination. We test our
methodology on 3 challenging datasets and demonstrate its ability to generate
multimodal photorealistic images with an improved quality in the unpaired
setting.
Related papers
- Unlocking Pre-trained Image Backbones for Semantic Image Synthesis [29.688029979801577]
We propose a new class of GAN discriminators for semantic image synthesis that generates highly realistic images.
Our model, which we dub DP-SIMS, achieves state-of-the-art results in terms of image quality and consistency with the input label maps on ADE-20K, COCO-Stuff, and Cityscapes.
arXiv Detail & Related papers (2023-12-20T09:39:19Z) - Towards Pragmatic Semantic Image Synthesis for Urban Scenes [4.36080478413575]
We present a new task: given a dataset with synthetic images and labels and a dataset with unlabeled real images, our goal is to learn a model that can generate images with the content of the input mask and the appearance of real images.
We leverage the synthetic image as a guide to the content of the generated image by penalizing the difference between their high-level features on a patch level.
In contrast to previous works which employ one discriminator that overfits the target domain semantic distribution, we employ a discriminator for the whole image and multiscale discriminators on the image patches.
arXiv Detail & Related papers (2023-05-16T18:01:12Z) - Wavelet-based Unsupervised Label-to-Image Translation [9.339522647331334]
We propose a new Unsupervised paradigm for SIS (USIS) that makes use of a self-supervised segmentation loss and whole image wavelet based discrimination.
We test our methodology on 3 challenging datasets and demonstrate its ability to bridge the performance gap between paired and unpaired models.
arXiv Detail & Related papers (2023-05-16T17:48:44Z) - Cap2Aug: Caption guided Image to Image data Augmentation [41.53127698828463]
Cap2Aug is an image-to-image diffusion model-based data augmentation strategy using image captions as text prompts.
We generate captions from the limited training images and using these captions edit the training images using an image-to-image stable diffusion model.
This strategy generates augmented versions of images similar to the training images yet provides semantic diversity across the samples.
arXiv Detail & Related papers (2022-12-11T04:37:43Z) - High-Fidelity Guided Image Synthesis with Latent Diffusion Models [50.39294302741698]
The proposed approach outperforms the previous state-of-the-art by over 85.32% on the overall user satisfaction scores.
Human user study results show that the proposed approach outperforms the previous state-of-the-art by over 85.32% on the overall user satisfaction scores.
arXiv Detail & Related papers (2022-11-30T15:43:20Z) - Semantic Image Synthesis via Diffusion Models [159.4285444680301]
Denoising Diffusion Probabilistic Models (DDPMs) have achieved remarkable success in various image generation tasks.
Recent work on semantic image synthesis mainly follows the emphde facto Generative Adversarial Nets (GANs)
arXiv Detail & Related papers (2022-06-30T18:31:51Z) - A Shared Representation for Photorealistic Driving Simulators [83.5985178314263]
We propose to improve the quality of generated images by rethinking the discriminator architecture.
The focus is on the class of problems where images are generated given semantic inputs, such as scene segmentation maps or human body poses.
We aim to learn a shared latent representation that encodes enough information to jointly do semantic segmentation, content reconstruction, along with a coarse-to-fine grained adversarial reasoning.
arXiv Detail & Related papers (2021-12-09T18:59:21Z) - Semantic Segmentation with Generative Models: Semi-Supervised Learning
and Strong Out-of-Domain Generalization [112.68171734288237]
We propose a novel framework for discriminative pixel-level tasks using a generative model of both images and labels.
We learn a generative adversarial network that captures the joint image-label distribution and is trained efficiently using a large set of unlabeled images.
We demonstrate strong in-domain performance compared to several baselines, and are the first to showcase extreme out-of-domain generalization.
arXiv Detail & Related papers (2021-04-12T21:41:25Z) - You Only Need Adversarial Supervision for Semantic Image Synthesis [84.83711654797342]
We propose a novel, simplified GAN model, which needs only adversarial supervision to achieve high quality results.
We show that images synthesized by our model are more diverse and follow the color and texture of real images more closely.
arXiv Detail & Related papers (2020-12-08T23:00:48Z) - Seed the Views: Hierarchical Semantic Alignment for Contrastive
Representation Learning [116.91819311885166]
We propose a hierarchical semantic alignment strategy via expanding the views generated by a single image to textbfCross-samples and Multi-level representation.
Our method, termed as CsMl, has the ability to integrate multi-level visual representations across samples in a robust way.
arXiv Detail & Related papers (2020-12-04T17:26:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.