Emergent gauge symmetries -- making symmetry as well as breaking it
- URL: http://arxiv.org/abs/2110.00241v2
- Date: Thu, 21 Oct 2021 09:15:33 GMT
- Title: Emergent gauge symmetries -- making symmetry as well as breaking it
- Authors: Steven D. Bass
- Abstract summary: Gauge symmetries play an essential role in determining the interactions of particle physics.
They arise in high temperature superconductors, with string-net condensation and in the A-phase of superfluid He-3.
This article discusses recent thinking on possible emergent gauge symmetries in particle physics.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gauge symmetries play an essential role in determining the interactions of
particle physics. Where do they come from? Might the gauge symmetries of the
Standard Model unify in the ultraviolet or might they be emergent in the
infrared, below some large scale close to the Planck scale? Emergent gauge
symmetries are important in quantum many-body systems in quantum phases
associated with long range entanglement and topological order, e.g., they arise
in high temperature superconductors, with string-net condensation and in the
A-phase of superfluid He-3. String-nets and superfluid He-3 exhibit emergent
properties similar to the building blocks of particle physics. Emergent gauge
symmetries also play an important role in simulations of quantum field
theories. This article discusses recent thinking on possible emergent gauge
symmetries in particle physics, commenting also on Higgs phenomena and the
vacuum energy or cosmological constant puzzle in emergent gauge systems.
Related papers
- Hilbert space geometry and quantum chaos [39.58317527488534]
We consider the symmetric part of the QGT for various multi-parametric random matrix Hamiltonians.
We find for a two-dimensional parameter space that, while the ergodic phase corresponds to the smooth manifold, the integrable limit marks itself as a singular geometry with a conical defect.
arXiv Detail & Related papers (2024-11-18T19:00:17Z) - Entanglement asymmetry in conformal field theory and holography [0.0]
Entanglement asymmetry is a measure of symmetry breaking in quantum subsystems.
We study the asymmetry of a class of excited "coherent states" in conformal quantum field theories with a U(1) symmetry.
arXiv Detail & Related papers (2024-07-10T18:08:27Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Emergence of non-Abelian SU(2) invariance in Abelian frustrated
fermionic ladders [37.69303106863453]
We consider a system of interacting spinless fermions on a two-leg triangular ladder with $pi/2$ magnetic flux per triangular plaquette.
Microscopically, the system exhibits a U(1) symmetry corresponding to the conservation of total fermionic charge, and a discrete $mathbbZ$ symmetry.
At the intersection of the three phases, the system features a critical point with an emergent SU(2) symmetry.
arXiv Detail & Related papers (2023-05-11T15:57:27Z) - Aharonov-Bohm effect for confined matter in lattice gauge theories [0.0]
We study the dynamics of mesons residing in a ring-shaped lattice of mesoscopic size pierced by an effective magnetic field.
We find a new type of Aharonov-Bohm effect that goes beyond the particle-like effect and reflects the the features of the confining gauge potential.
arXiv Detail & Related papers (2023-04-25T10:51:42Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Thermoelectric properties of topological chains coupled to a quantum dot [40.19796930944118]
Topological one-dimensional superconductors can sustain in their extremities zero energy modes that are protected by different kinds of symmetries.
We consider the simplest kind of topological insulators, namely chains of atoms with hybridized $sp$ orbitals.
We show that the electrical conductance and the Wiedemann-Franz ratio of the device at the topological transition have universal values at very low temperatures.
arXiv Detail & Related papers (2021-12-20T22:52:00Z) - Dynamical symmetries of periodically-driven quantum systems and their
spectroscopic signatures [0.0]
We study rotational, particle-hole, chiral and time-reversal symmetries and their signatures in spectroscopy.
Our predictions reveal new physical phenomena when a quantum system reaches the strong light-matter coupling regime.
arXiv Detail & Related papers (2020-11-13T04:44:44Z) - Gauge-Symmetry Violation Quantum Phase Transition in Lattice Gauge
Theories [0.0]
Gauge symmetry plays a key role in our description of subatomic matter.
Recent years have seen tantalizing progress in the microscopic reconstruction of gauge theories in engineered quantum simulators.
Here, we answer this question in the affirmative for a paradigm gauge theory akin to quantum electrodynamics.
arXiv Detail & Related papers (2020-10-14T18:20:28Z) - Observation of gauge invariance in a 71-site Bose-Hubbard quantum
simulator [5.5847872095969375]
Gauge theories implement fundamental laws of physics by local symmetry constraints.
In quantum electrodynamics, Gauss's law introduces an intrinsic local relation between charged matter and electromagnetic fields.
We simulate gauge-theory dynamics in microscopically engineered quantum devices.
arXiv Detail & Related papers (2020-03-19T18:00:01Z) - Probing chiral edge dynamics and bulk topology of a synthetic Hall
system [52.77024349608834]
Quantum Hall systems are characterized by the quantization of the Hall conductance -- a bulk property rooted in the topological structure of the underlying quantum states.
Here, we realize a quantum Hall system using ultracold dysprosium atoms, in a two-dimensional geometry formed by one spatial dimension.
We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviors.
arXiv Detail & Related papers (2020-01-06T16:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.