Leveraging Information Bottleneck for Scientific Document Summarization
- URL: http://arxiv.org/abs/2110.01280v1
- Date: Mon, 4 Oct 2021 09:43:47 GMT
- Title: Leveraging Information Bottleneck for Scientific Document Summarization
- Authors: Jiaxin Ju, Ming Liu, Huan Yee Koh, Yuan Jin, Lan Du and Shirui Pan
- Abstract summary: This paper presents an unsupervised extractive approach to summarize scientific long documents.
Inspired by previous work which uses the Information Bottleneck principle for sentence compression, we extend it to document level summarization.
- Score: 26.214930773343887
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents an unsupervised extractive approach to summarize
scientific long documents based on the Information Bottleneck principle.
Inspired by previous work which uses the Information Bottleneck principle for
sentence compression, we extend it to document level summarization with two
separate steps. In the first step, we use signal(s) as queries to retrieve the
key content from the source document. Then, a pre-trained language model
conducts further sentence search and edit to return the final extracted
summaries. Importantly, our work can be flexibly extended to a multi-view
framework by different signals. Automatic evaluation on three scientific
document datasets verifies the effectiveness of the proposed framework. The
further human evaluation suggests that the extracted summaries cover more
content aspects than previous systems.
Related papers
- Absformer: Transformer-based Model for Unsupervised Multi-Document
Abstractive Summarization [1.066048003460524]
Multi-document summarization (MDS) refers to the task of summarizing the text in multiple documents into a concise summary.
Abstractive MDS aims to generate a coherent and fluent summary for multiple documents using natural language generation techniques.
We propose Absformer, a new Transformer-based method for unsupervised abstractive summary generation.
arXiv Detail & Related papers (2023-06-07T21:18:23Z) - ReSel: N-ary Relation Extraction from Scientific Text and Tables by
Learning to Retrieve and Select [53.071352033539526]
We study the problem of extracting N-ary relations from scientific articles.
Our proposed method ReSel decomposes this task into a two-stage procedure.
Our experiments on three scientific information extraction datasets show that ReSel outperforms state-of-the-art baselines significantly.
arXiv Detail & Related papers (2022-10-26T02:28:02Z) - TRIE++: Towards End-to-End Information Extraction from Visually Rich
Documents [51.744527199305445]
This paper proposes a unified end-to-end information extraction framework from visually rich documents.
Text reading and information extraction can reinforce each other via a well-designed multi-modal context block.
The framework can be trained in an end-to-end trainable manner, achieving global optimization.
arXiv Detail & Related papers (2022-07-14T08:52:07Z) - ACM -- Attribute Conditioning for Abstractive Multi Document
Summarization [0.0]
We propose a model that incorporates attribute conditioning modules in order to decouple conflicting information by conditioning for a certain attribute in the output summary.
This approach shows strong gains in ROUGE score over baseline multi document summarization approaches.
arXiv Detail & Related papers (2022-05-09T00:00:14Z) - Modeling Endorsement for Multi-Document Abstractive Summarization [10.166639983949887]
A crucial difference between single- and multi-document summarization is how salient content manifests itself in the document(s)
In this paper, we model the cross-document endorsement effect and its utilization in multiple document summarization.
Our method generates a synopsis from each document, which serves as an endorser to identify salient content from other documents.
arXiv Detail & Related papers (2021-10-15T03:55:42Z) - Text Summarization with Latent Queries [60.468323530248945]
We introduce LaQSum, the first unified text summarization system that learns Latent Queries from documents for abstractive summarization with any existing query forms.
Under a deep generative framework, our system jointly optimize a latent query model and a conditional language model, allowing users to plug-and-play queries of any type at test time.
Our system robustly outperforms strong comparison systems across summarization benchmarks with different query types, document settings, and target domains.
arXiv Detail & Related papers (2021-05-31T21:14:58Z) - EASE: Extractive-Abstractive Summarization with Explanations [18.046254486733186]
We present an explainable summarization system based on the Information Bottleneck principle.
Inspired by previous research that humans use a two-stage framework to summarize long documents, our framework first extracts a pre-defined amount of evidence spans as explanations.
We show that explanations from our framework are more relevant than simple baselines, without substantially sacrificing the quality of the generated summary.
arXiv Detail & Related papers (2021-05-14T17:45:06Z) - Hierarchical Bi-Directional Self-Attention Networks for Paper Review
Rating Recommendation [81.55533657694016]
We propose a Hierarchical bi-directional self-attention Network framework (HabNet) for paper review rating prediction and recommendation.
Specifically, we leverage the hierarchical structure of the paper reviews with three levels of encoders: sentence encoder (level one), intra-review encoder (level two) and inter-review encoder (level three)
We are able to identify useful predictors to make the final acceptance decision, as well as to help discover the inconsistency between numerical review ratings and text sentiment conveyed by reviewers.
arXiv Detail & Related papers (2020-11-02T08:07:50Z) - Topic-Guided Abstractive Text Summarization: a Joint Learning Approach [19.623946402970933]
We introduce a new approach for abstractive text summarization, Topic-Guided Abstractive Summarization.
The idea is to incorporate neural topic modeling with a Transformer-based sequence-to-sequence (seq2seq) model in a joint learning framework.
arXiv Detail & Related papers (2020-10-20T14:45:25Z) - SummPip: Unsupervised Multi-Document Summarization with Sentence Graph
Compression [61.97200991151141]
SummPip is an unsupervised method for multi-document summarization.
We convert the original documents to a sentence graph, taking both linguistic and deep representation into account.
We then apply spectral clustering to obtain multiple clusters of sentences, and finally compress each cluster to generate the final summary.
arXiv Detail & Related papers (2020-07-17T13:01:15Z) - Pre-training for Abstractive Document Summarization by Reinstating
Source Text [105.77348528847337]
This paper presents three pre-training objectives which allow us to pre-train a Seq2Seq based abstractive summarization model on unlabeled text.
Experiments on two benchmark summarization datasets show that all three objectives can improve performance upon baselines.
arXiv Detail & Related papers (2020-04-04T05:06:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.