A curated, ontology-based, large-scale knowledge graph of artificial
intelligence tasks and benchmarks
- URL: http://arxiv.org/abs/2110.01434v2
- Date: Wed, 6 Oct 2021 09:07:34 GMT
- Title: A curated, ontology-based, large-scale knowledge graph of artificial
intelligence tasks and benchmarks
- Authors: Kathrin Blagec, Adriano Barbosa-Silva, Simon Ott, Matthias Samwald
- Abstract summary: Intelligence Task Ontology and Knowledge Graph (ITO) is a comprehensive resource on artificial intelligence tasks, benchmark results and performance metrics.
ITO is a richly structured and manually curated resource on artificial intelligence tasks, benchmark results and performance metrics.
The goal of ITO is to enable precise and network-based analyses of the global landscape of AI tasks and capabilities.
- Score: 4.04540578484476
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Research in artificial intelligence (AI) is addressing a growing number of
tasks through a rapidly growing number of models and methodologies. This makes
it difficult to keep track of where novel AI methods are successfully -- or
still unsuccessfully -- applied, how progress is measured, how different
advances might synergize with each other, and how future research should be
prioritized.
To help address these issues, we created the Intelligence Task Ontology and
Knowledge Graph (ITO), a comprehensive, richly structured and manually curated
resource on artificial intelligence tasks, benchmark results and performance
metrics. The current version of ITO contain 685,560 edges, 1,100 classes
representing AI processes and 1,995 properties representing performance
metrics.
The goal of ITO is to enable precise and network-based analyses of the global
landscape of AI tasks and capabilities. ITO is based on technologies that allow
for easy integration and enrichment with external data, automated inference and
continuous, collaborative expert curation of underlying ontological models. We
make the ITO dataset and a collection of Jupyter notebooks utilising ITO openly
available.
Related papers
- Generative AI in Health Economics and Outcomes Research: A Taxonomy of Key Definitions and Emerging Applications, an ISPOR Working Group Report [12.204470166456561]
Generative AI shows significant potential in health economics and outcomes research (HEOR)
Generative AI shows significant potential in HEOR, enhancing efficiency, productivity, and offering novel solutions to complex challenges.
Foundation models are promising in automating complex tasks, though challenges remain in scientific reliability, bias, interpretability, and workflow integration.
arXiv Detail & Related papers (2024-10-26T15:42:50Z) - O1 Replication Journey: A Strategic Progress Report -- Part 1 [52.062216849476776]
This paper introduces a pioneering approach to artificial intelligence research, embodied in our O1 Replication Journey.
Our methodology addresses critical challenges in modern AI research, including the insularity of prolonged team-based projects.
We propose the journey learning paradigm, which encourages models to learn not just shortcuts, but the complete exploration process.
arXiv Detail & Related papers (2024-10-08T15:13:01Z) - Converging Paradigms: The Synergy of Symbolic and Connectionist AI in LLM-Empowered Autonomous Agents [55.63497537202751]
Article explores the convergence of connectionist and symbolic artificial intelligence (AI)
Traditionally, connectionist AI focuses on neural networks, while symbolic AI emphasizes symbolic representation and logic.
Recent advancements in large language models (LLMs) highlight the potential of connectionist architectures in handling human language as a form of symbols.
arXiv Detail & Related papers (2024-07-11T14:00:53Z) - The Artificial Intelligence Ontology: LLM-assisted construction of AI concept hierarchies [0.7796141041639462]
The Artificial Intelligence Ontology (AIO) is a systematization of artificial intelligence (AI) concepts, methodologies, and their interrelations.
AIO aims to address the rapidly evolving landscape of AI by providing a comprehensive framework that encompasses both technical and ethical aspects of AI technologies.
arXiv Detail & Related papers (2024-04-03T20:08:15Z) - The Foundations of Computational Management: A Systematic Approach to
Task Automation for the Integration of Artificial Intelligence into Existing
Workflows [55.2480439325792]
This article introduces Computational Management, a systematic approach to task automation.
The article offers three easy step-by-step procedures to begin the process of implementing AI within a workflow.
arXiv Detail & Related papers (2024-02-07T01:45:14Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
Artificial Intelligence for IT operations (AIOps) aims to combine the power of AI with the big data generated by IT Operations processes.
We discuss in depth the key types of data emitted by IT Operations activities, the scale and challenges in analyzing them, and where they can be helpful.
We categorize the key AIOps tasks as - incident detection, failure prediction, root cause analysis and automated actions.
arXiv Detail & Related papers (2023-04-10T15:38:12Z) - OpenAGI: When LLM Meets Domain Experts [51.86179657467822]
Human Intelligence (HI) excels at combining basic skills to solve complex tasks.
This capability is vital for Artificial Intelligence (AI) and should be embedded in comprehensive AI Agents.
We introduce OpenAGI, an open-source platform designed for solving multi-step, real-world tasks.
arXiv Detail & Related papers (2023-04-10T03:55:35Z) - Data-centric Artificial Intelligence: A Survey [47.24049907785989]
Recently, the role of data in AI has been significantly magnified, giving rise to the emerging concept of data-centric AI.
In this survey, we discuss the necessity of data-centric AI, followed by a holistic view of three general data-centric goals.
We believe this is the first comprehensive survey that provides a global view of a spectrum of tasks across various stages of the data lifecycle.
arXiv Detail & Related papers (2023-03-17T17:44:56Z) - Towards Explainable Artificial Intelligence in Banking and Financial
Services [0.0]
We study and analyze the recent work done in Explainable Artificial Intelligence (XAI) methods and tools.
We introduce a novel XAI process, which facilitates producing explainable models while maintaining a high level of learning performance.
We develop a digital dashboard to facilitate interacting with the algorithm results.
arXiv Detail & Related papers (2021-12-14T08:02:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.