Generalization in NLI: Ways (Not) To Go Beyond Simple Heuristics
- URL: http://arxiv.org/abs/2110.01518v1
- Date: Mon, 4 Oct 2021 15:37:07 GMT
- Title: Generalization in NLI: Ways (Not) To Go Beyond Simple Heuristics
- Authors: Prajjwal Bhargava, Aleksandr Drozd, Anna Rogers
- Abstract summary: We conduct a case study of generalization in NLI in a range of BERT-based architectures.
We report 2 successful and 3 unsuccessful strategies, all providing insights into how Transformer-based models learn to generalize.
- Score: 78.6177778161625
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Much of recent progress in NLU was shown to be due to models' learning
dataset-specific heuristics. We conduct a case study of generalization in NLI
(from MNLI to the adversarially constructed HANS dataset) in a range of
BERT-based architectures (adapters, Siamese Transformers, HEX debiasing), as
well as with subsampling the data and increasing the model size. We report 2
successful and 3 unsuccessful strategies, all providing insights into how
Transformer-based models learn to generalize.
Related papers
- Representation Learning for Tabular Data: A Comprehensive Survey [23.606506938919605]
Tabular data, structured as rows and columns, is among the most prevalent data types in machine learning classification and regression applications.
Deep Neural Networks (DNNs) have recently demonstrated promising results through their capability of representation learning.
We organize existing methods into three main categories according to their generalization capabilities.
arXiv Detail & Related papers (2025-04-17T17:58:23Z) - Generating Realistic Tabular Data with Large Language Models [49.03536886067729]
Large language models (LLM) have been used for diverse tasks, but do not capture the correct correlation between the features and the target variable.
We propose a LLM-based method with three important improvements to correctly capture the ground-truth feature-class correlation in the real data.
Our experiments show that our method significantly outperforms 10 SOTA baselines on 20 datasets in downstream tasks.
arXiv Detail & Related papers (2024-10-29T04:14:32Z) - Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
Large language models (LLMs) have significantly benefited from training on diverse, high-quality task-specific data.
We present a novel approach, ReverseGen, designed to automatically generate effective training samples.
arXiv Detail & Related papers (2024-10-22T06:43:28Z) - Language Models are Graph Learners [70.14063765424012]
Language Models (LMs) are challenging the dominance of domain-specific models, including Graph Neural Networks (GNNs) and Graph Transformers (GTs)
We propose a novel approach that empowers off-the-shelf LMs to achieve performance comparable to state-of-the-art GNNs on node classification tasks.
arXiv Detail & Related papers (2024-10-03T08:27:54Z) - Improved Generalization Bounds for Communication Efficient Federated Learning [4.3707341422218215]
This paper focuses on reducing the communication cost of federated learning by exploring generalization bounds and representation learning.
We design a novel Federated Learning with Adaptive Local Steps (FedALS) algorithm based on our generalization bound and representation learning analysis.
arXiv Detail & Related papers (2024-04-17T21:17:48Z) - N-Grammer: Augmenting Transformers with latent n-grams [35.39961549040385]
We propose a simple yet effective modification to the Transformer architecture inspired by the literature in statistical language modeling, by augmenting the model with n-grams that are constructed from a discrete latent representation of the text sequence.
We evaluate our model, the N-Grammer on language modeling on the C4 data-set as well as text classification on the SuperGLUE data-set, and find that it outperforms several strong baselines such as the Transformer and the Primer.
arXiv Detail & Related papers (2022-07-13T17:18:02Z) - Learning Contextual Representations for Semantic Parsing with
Generation-Augmented Pre-Training [86.91380874390778]
We present Generation-Augmented Pre-training (GAP), that jointly learns representations of natural language utterances and table schemas by leveraging generation models to generate pre-train data.
Based on experimental results, neural semantics that leverage GAP MODEL obtain new state-of-the-art results on both SPIDER and CRITERIA-TO-generative benchmarks.
arXiv Detail & Related papers (2020-12-18T15:53:50Z) - Generative Adversarial Networks for Annotated Data Augmentation in Data
Sparse NLU [0.76146285961466]
Data sparsity is one of the key challenges associated with model development in Natural Language Understanding.
We present our results on boosting NLU model performance through training data augmentation using a sequential generative adversarial network (GAN)
Our experiments reveal synthetic data generated using the sequential generative adversarial network provides significant performance boosts across multiple metrics.
arXiv Detail & Related papers (2020-12-09T20:38:17Z) - KGPT: Knowledge-Grounded Pre-Training for Data-to-Text Generation [100.79870384880333]
We propose a knowledge-grounded pre-training (KGPT) to generate knowledge-enriched text.
We adopt three settings, namely fully-supervised, zero-shot, few-shot to evaluate its effectiveness.
Under zero-shot setting, our model achieves over 30 ROUGE-L on WebNLG while all other baselines fail.
arXiv Detail & Related papers (2020-10-05T19:59:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.