Assessing glaucoma in retinal fundus photographs using Deep Feature
Consistent Variational Autoencoders
- URL: http://arxiv.org/abs/2110.01534v1
- Date: Mon, 4 Oct 2021 16:06:49 GMT
- Title: Assessing glaucoma in retinal fundus photographs using Deep Feature
Consistent Variational Autoencoders
- Authors: Sayan Mandal, Alessandro A. Jammal and Felipe A. Medeiros
- Abstract summary: glaucoma is challenging to detect since it remains asymptomatic until the symptoms are severe.
Early identification of glaucoma is generally made based on functional, structural, and clinical assessments.
Deep learning methods have partially solved this dilemma by bypassing the marker identification stage and analyzing high-level information directly to classify the data.
- Score: 63.391402501241195
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: One of the leading causes of blindness is glaucoma, which is challenging to
detect since it remains asymptomatic until the symptoms are severe. Thus,
diagnosis is usually possible until the markers are easy to identify, i.e., the
damage has already occurred. Early identification of glaucoma is generally made
based on functional, structural, and clinical assessments. However, due to the
nature of the disease, researchers still debate which markers qualify as a
consistent glaucoma metric. Deep learning methods have partially solved this
dilemma by bypassing the marker identification stage and analyzing high-level
information directly to classify the data. Although favorable, these methods
make expert analysis difficult as they provide no insight into the model
discrimination process. In this paper, we overcome this using deep generative
networks, a deep learning model that learns complicated, high-dimensional
probability distributions. We train a Deep Feature consistent Variational
Autoencoder (DFC-VAE) to reconstruct optic disc images. We show that a
small-sized latent space obtained from the DFC-VAE can learn the
high-dimensional glaucoma data distribution and provide discriminatory evidence
between normal and glaucoma eyes. Latent representations of size as low as 128
from our model got a 0.885 area under the receiver operating characteristic
curve when trained with Support Vector Classifier.
Related papers
- Shape Matters: Detecting Vertebral Fractures Using Differentiable
Point-Based Shape Decoding [51.38395069380457]
Degenerative spinal pathologies are highly prevalent among the elderly population.
Timely diagnosis of osteoporotic fractures and other degenerative deformities facilitates proactive measures to mitigate the risk of severe back pain and disability.
In this study, we specifically explore the use of shape auto-encoders for vertebrae.
arXiv Detail & Related papers (2023-12-08T18:11:22Z) - InceptionCaps: A Performant Glaucoma Classification Model for
Data-scarce Environment [0.0]
glaucoma is an irreversible ocular disease and is the second leading cause of visual disability worldwide.
This work reviews existing state of the art models and proposes InceptionCaps, a novel capsule network (CapsNet) based deep learning model having pre-trained InceptionV3 as its convolution base, for automatic glaucoma classification.
InceptionCaps achieved an accuracy of 0.956, specificity of 0.96, and AUC of 0.9556, which surpasses several state-of-the-art deep learning model performances on the RIM-ONE v2 dataset.
arXiv Detail & Related papers (2023-11-24T11:58:11Z) - RADNet: Ensemble Model for Robust Glaucoma Classification in Color
Fundus Images [0.0]
Glaucoma is one of the most severe eye diseases, characterized by rapid progression and leading to irreversible blindness.
Regular glaucoma screenings of the population shall improve early-stage detection, however the desirable frequency of etymological checkups is often not feasible.
In our work, we propose an advanced image pre-processing technique combined with an ensemble of deep classification networks.
arXiv Detail & Related papers (2022-05-25T16:48:00Z) - Automatic detection of glaucoma via fundus imaging and artificial
intelligence: A review [0.4215938932388722]
Glaucoma is a leading cause of irreversible vision impairment globally.
Fundus imaging is non-invasive and low-cost.
Can artificial intelligence automatically find the boundaries of the optic cup and disc.
arXiv Detail & Related papers (2022-04-12T07:47:13Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
This paper presents a deep learning approach to automatically recognize powdery mildew on cucumber leaves.
We focus on unsupervised deep learning techniques applied to multispectral imaging data.
We propose the use of autoencoder architectures to investigate two strategies for disease detection.
arXiv Detail & Related papers (2021-12-20T13:29:13Z) - Facial Anatomical Landmark Detection using Regularized Transfer Learning
with Application to Fetal Alcohol Syndrome Recognition [24.27777060287004]
Fetal alcohol syndrome (FAS) caused by prenatal alcohol exposure can result in a series of cranio-facial anomalies.
Anatomical landmark detection is important to detect the presence of FAS associated facial anomalies.
Current deep learning-based heatmap regression methods designed for facial landmark detection in natural images assume availability of large datasets.
We develop a new regularized transfer learning approach that exploits the knowledge of a network learned on large facial recognition datasets.
arXiv Detail & Related papers (2021-09-12T11:05:06Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
We propose a machine learning system for the detection of referable Diabetic Retinopathy in fundus images.
By extracting local information from image patches and combining it efficiently through an attention mechanism, our system is able to achieve high classification accuracy.
We evaluate our approach on publicly available retinal image datasets, in which it exhibits near state-of-the-art performance.
arXiv Detail & Related papers (2021-03-02T13:14:15Z) - Uncertainty aware and explainable diagnosis of retinal disease [0.0]
We perform uncertainty analysis of a deep learning model for diagnosis of four retinal diseases.
We show the features that a system used to make prediction while uncertainty awareness is the ability of a system to highlight when it is not sure about the decision.
arXiv Detail & Related papers (2021-01-26T23:37:30Z) - Manifolds for Unsupervised Visual Anomaly Detection [79.22051549519989]
Unsupervised learning methods that don't necessarily encounter anomalies in training would be immensely useful.
We develop a novel hyperspherical Variational Auto-Encoder (VAE) via stereographic projections with a gyroplane layer.
We present state-of-the-art results on visual anomaly benchmarks in precision manufacturing and inspection, demonstrating real-world utility in industrial AI scenarios.
arXiv Detail & Related papers (2020-06-19T20:41:58Z) - Modeling and Enhancing Low-quality Retinal Fundus Images [167.02325845822276]
Low-quality fundus images increase uncertainty in clinical observation and lead to the risk of misdiagnosis.
We propose a clinically oriented fundus enhancement network (cofe-Net) to suppress global degradation factors.
Experiments on both synthetic and real images demonstrate that our algorithm effectively corrects low-quality fundus images without losing retinal details.
arXiv Detail & Related papers (2020-05-12T08:01:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.