Using Out-of-the-Box Frameworks for Unpaired Image Translation and Image
Segmentation for the crossMoDA Challenge
- URL: http://arxiv.org/abs/2110.01607v1
- Date: Sat, 2 Oct 2021 08:04:46 GMT
- Title: Using Out-of-the-Box Frameworks for Unpaired Image Translation and Image
Segmentation for the crossMoDA Challenge
- Authors: Jae Won Choi
- Abstract summary: We use the CUT model for domain adaptation from contrast-enhanced T1 MR to high-resolution T2 MR.
For the segmentation task, we use the nnU-Net framework.
- Score: 0.6396288020763143
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The purpose of this study is to apply and evaluate out-of-the-box deep
learning frameworks for the crossMoDA challenge. We use the CUT model for
domain adaptation from contrast-enhanced T1 MR to high-resolution T2 MR. As
data augmentation, we generated additional images with vestibular schwannomas
with lower signal intensity. For the segmentation task, we use the nnU-Net
framework. Our final submission achieved a mean Dice score of 0.8299 (0.0465)
in the validation phase.
Related papers
- Unsupervised Modality Adaptation with Text-to-Image Diffusion Models for Semantic Segmentation [54.96563068182733]
We propose Modality Adaptation with text-to-image Diffusion Models (MADM) for semantic segmentation task.
MADM utilizes text-to-image diffusion models pre-trained on extensive image-text pairs to enhance the model's cross-modality capabilities.
We show that MADM achieves state-of-the-art adaptation performance across various modality tasks, including images to depth, infrared, and event modalities.
arXiv Detail & Related papers (2024-10-29T03:49:40Z) - Diffusion for Natural Image Matting [93.86689168212241]
We present DiffMatte, a solution designed to overcome the challenges of image matting.
First, DiffMatte decouples the decoder from the intricately coupled matting network design, involving only one lightweight decoder in the iterations of the diffusion process.
Second, we employ a self-aligned training strategy with uniform time intervals, ensuring a consistent noise sampling between training and inference across the entire time domain.
arXiv Detail & Related papers (2023-12-10T15:28:56Z) - Contrastive Denoising Score for Text-guided Latent Diffusion Image Editing [58.48890547818074]
We present a powerful modification of Contrastive Denoising Score (CUT) for latent diffusion models (LDM)
Our approach enables zero-shot imageto-image translation and neural field (NeRF) editing, achieving structural correspondence between the input and output.
arXiv Detail & Related papers (2023-11-30T15:06:10Z) - Image-level supervision and self-training for transformer-based
cross-modality tumor segmentation [2.29206349318258]
We propose a new semi-supervised training strategy called MoDATTS.
MoDATTS is designed for accurate cross-modality 3D tumor segmentation on unpaired bi-modal datasets.
We report that 99% and 100% of this maximum performance can be attained if 20% and 50% of the target data is annotated.
arXiv Detail & Related papers (2023-09-17T11:50:12Z) - Dense Affinity Matching for Few-Shot Segmentation [83.65203917246745]
Few-Shot (FSS) aims to segment the novel class images with a few samples.
We propose a dense affinity matching framework to exploit the support-query interaction.
We show that our framework performs very competitively under different settings with only 0.68M parameters.
arXiv Detail & Related papers (2023-07-17T12:27:15Z) - Decoupled Diffusion Models: Simultaneous Image to Zero and Zero to Noise [53.04220377034574]
We propose decoupled diffusion models (DDMs) for high-quality (un)conditioned image generation in less than 10 function evaluations.
We mathematically derive 1) the training objectives and 2) for the reverse time the sampling formula based on an analytic transition probability which models image to zero transition.
We experimentally yield very competitive performance compared with the state of the art in 1) unconditioned image generation, textite.g., CIFAR-10 and CelebA-HQ-256 and 2) image-conditioned downstream tasks such as super-resolution, saliency detection, edge detection, and image in
arXiv Detail & Related papers (2023-06-23T18:08:00Z) - MS-MT: Multi-Scale Mean Teacher with Contrastive Unpaired Translation
for Cross-Modality Vestibular Schwannoma and Cochlea Segmentation [11.100048696665496]
unsupervised domain adaptation (UDA) methods have achieved promising cross-modality segmentation performance.
We propose a multi-scale self-ensembling based UDA framework for automatic segmentation of two key brain structures.
Our method demonstrates promising segmentation performance with a mean Dice score of 83.8% and 81.4%.
arXiv Detail & Related papers (2023-03-28T08:55:00Z) - Multi-view Cross-Modality MR Image Translation for Vestibular Schwannoma
and Cochlea Segmentation [0.7829352305480285]
We propose a multi-view image translation framework, which can translate contrast-enhanced T1 (ceT1) MR imaging to high-resolution T2 (hrT2) MR imaging.
We adopt two image translation models in parallel that use a pixel-level consistent constraint and a patch-level contrastive constraint, respectively.
Thereby, we can augment pseudo-hrT2 images reflecting different perspectives, which eventually lead to a high-performing segmentation model.
arXiv Detail & Related papers (2023-03-27T08:42:10Z) - Unsupervised Cross-Modality Domain Adaptation for Vestibular Schwannoma
Segmentation and Koos Grade Prediction based on Semi-Supervised Contrastive
Learning [1.5953825926551457]
unsupervised domain adaptation framework for cross-modality vestibular schwannoma (VS) and cochlea segmentation and Koos grade prediction.
nnU-Net model is utilized for VS and cochlea segmentation, while a semi-supervised contrastive learning pre-train approach is employed to improve the model performance.
Our method received rank 4 in task1 with a mean Dice score of 0.8394 and rank 2 in task2 with Macro-Average Mean Square Error of 0.3941.
arXiv Detail & Related papers (2022-10-09T13:12:20Z) - Unsupervised Cross-Modality Domain Adaptation for Segmenting Vestibular
Schwannoma and Cochlea with Data Augmentation and Model Ensemble [4.942327155020771]
In this paper, we propose an unsupervised learning framework to segment the vestibular schwannoma and the cochlea.
Our framework leverages information from contrast-enhanced T1-weighted (ceT1-w) MRIs and its labels, and produces segmentations for T2-weighted MRIs without any labels in the target domain.
Our method is easy to build and produces promising segmentations, with a mean Dice score of 0.7930 and 0.7432 for VS and cochlea respectively in the validation set.
arXiv Detail & Related papers (2021-09-24T20:10:05Z) - Pairwise Relation Learning for Semi-supervised Gland Segmentation [90.45303394358493]
We propose a pairwise relation-based semi-supervised (PRS2) model for gland segmentation on histology images.
This model consists of a segmentation network (S-Net) and a pairwise relation network (PR-Net)
We evaluate our model against five recent methods on the GlaS dataset and three recent methods on the CRAG dataset.
arXiv Detail & Related papers (2020-08-06T15:02:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.