HYPPO: A Surrogate-Based Multi-Level Parallelism Tool for Hyperparameter
Optimization
- URL: http://arxiv.org/abs/2110.01698v1
- Date: Mon, 4 Oct 2021 20:14:22 GMT
- Title: HYPPO: A Surrogate-Based Multi-Level Parallelism Tool for Hyperparameter
Optimization
- Authors: Vincent Dumont, Casey Garner, Anuradha Trivedi, Chelsea Jones, Vidya
Ganapati, Juliane Mueller, Talita Perciano, Mariam Kiran, and Marc Day
- Abstract summary: HYPPO uses adaptive surrogate models and accounts for uncertainty in model predictions to find accurate and reliable models that make robust predictions.
We demonstrate various software features on time-series prediction and image classification problems as well as a scientific application in computed tomography image reconstruction.
- Score: 0.2844198651668139
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a new software, HYPPO, that enables the automatic tuning of
hyperparameters of various deep learning (DL) models. Unlike other
hyperparameter optimization (HPO) methods, HYPPO uses adaptive surrogate models
and directly accounts for uncertainty in model predictions to find accurate and
reliable models that make robust predictions. Using asynchronous nested
parallelism, we are able to significantly alleviate the computational burden of
training complex architectures and quantifying the uncertainty. HYPPO is
implemented in Python and can be used with both TensorFlow and PyTorch
libraries. We demonstrate various software features on time-series prediction
and image classification problems as well as a scientific application in
computed tomography image reconstruction. Finally, we show that (1) we can
reduce by an order of magnitude the number of evaluations necessary to find the
most optimal region in the hyperparameter space and (2) we can reduce by two
orders of magnitude the throughput for such HPO process to complete.
Related papers
- Scalable and Effective Negative Sample Generation for Hyperedge Prediction [55.9298019975967]
Hyperedge prediction is crucial for understanding complex multi-entity interactions in web-based applications.
Traditional methods often face difficulties in generating high-quality negative samples due to imbalance between positive and negative instances.
We present the scalable and effective negative sample generation for Hyperedge Prediction (SEHP) framework, which utilizes diffusion models to tackle these challenges.
arXiv Detail & Related papers (2024-11-19T09:16:25Z) - Model Performance Prediction for Hyperparameter Optimization of Deep
Learning Models Using High Performance Computing and Quantum Annealing [0.0]
We show that integrating model performance prediction with early stopping methods holds great potential to speed up the HPO process of deep learning models.
We propose a novel algorithm called Swift-Hyperband that can use either classical or quantum support vector regression for performance prediction.
arXiv Detail & Related papers (2023-11-29T10:32:40Z) - Tune As You Scale: Hyperparameter Optimization For Compute Efficient
Training [0.0]
We propose a practical method for robustly tuning large models.
CarBS performs local search around the performance-cost frontier.
Among our results, we effectively solve the entire ProcGen benchmark just by tuning a simple baseline.
arXiv Detail & Related papers (2023-06-13T18:22:24Z) - Two-step hyperparameter optimization method: Accelerating hyperparameter
search by using a fraction of a training dataset [0.15420205433587747]
We present a two-step HPO method as a strategic solution to curbing computational demands and wait times.
We present our recent application of the two-step HPO method to the development of neural network emulators for aerosol activation.
arXiv Detail & Related papers (2023-02-08T02:38:26Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
We propose a computationally efficient and powerful Bayesian approach for sparse high-dimensional linear regression.
Minimal prior assumptions on the parameters are used through the use of plug-in empirical Bayes estimates.
The proposed approach is implemented in the R package probe.
arXiv Detail & Related papers (2022-09-16T19:15:50Z) - Towards Learning Universal Hyperparameter Optimizers with Transformers [57.35920571605559]
We introduce the OptFormer, the first text-based Transformer HPO framework that provides a universal end-to-end interface for jointly learning policy and function prediction.
Our experiments demonstrate that the OptFormer can imitate at least 7 different HPO algorithms, which can be further improved via its function uncertainty estimates.
arXiv Detail & Related papers (2022-05-26T12:51:32Z) - Dynamically-Scaled Deep Canonical Correlation Analysis [77.34726150561087]
Canonical Correlation Analysis (CCA) is a method for feature extraction of two views by finding maximally correlated linear projections of them.
We introduce a novel dynamic scaling method for training an input-dependent canonical correlation model.
arXiv Detail & Related papers (2022-03-23T12:52:49Z) - Scaling Structured Inference with Randomization [64.18063627155128]
We propose a family of dynamic programming (RDP) randomized for scaling structured models to tens of thousands of latent states.
Our method is widely applicable to classical DP-based inference.
It is also compatible with automatic differentiation so can be integrated with neural networks seamlessly.
arXiv Detail & Related papers (2021-12-07T11:26:41Z) - Towards Robust and Automatic Hyper-Parameter Tunning [39.04604349338802]
We introduce a new class of HPO method and explore how the low-rank factorization of intermediate layers of a convolutional network can be used to define an analytical response surface.
We quantify how this surface behaves as a surrogate to model performance and can be solved using a trust-region search algorithm, which we call autoHyper.
arXiv Detail & Related papers (2021-11-28T05:27:34Z) - HyperNP: Interactive Visual Exploration of Multidimensional Projection
Hyperparameters [61.354362652006834]
HyperNP is a scalable method that allows for real-time interactive exploration of projection methods by training neural network approximations.
We evaluate the performance of the HyperNP across three datasets in terms of performance and speed.
arXiv Detail & Related papers (2021-06-25T17:28:14Z) - Practical and sample efficient zero-shot HPO [8.41866793161234]
We provide an overview of available approaches and introduce two novel techniques to handle the problem.
The first is based on a surrogate model and adaptively chooses pairs of dataset, configuration to query.
The second is for settings where finding, tuning and testing a surrogate model is problematic, is a multi-fidelity technique combining HyperBand with submodular optimization.
arXiv Detail & Related papers (2020-07-27T08:56:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.