Federating for Learning Group Fair Models
- URL: http://arxiv.org/abs/2110.01999v2
- Date: Thu, 7 Oct 2021 15:02:49 GMT
- Title: Federating for Learning Group Fair Models
- Authors: Afroditi Papadaki, Natalia Martinez, Martin Bertran, Guillermo Sapiro,
Miguel Rodrigues
- Abstract summary: Federated learning is an increasingly popular paradigm that enables a large number of entities to collaboratively learn better models.
We study minmax group fairness in paradigms where different participating entities may only have access to a subset of the population groups during the training phase.
- Score: 19.99325961328706
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning is an increasingly popular paradigm that enables a large
number of entities to collaboratively learn better models. In this work, we
study minmax group fairness in paradigms where different participating entities
may only have access to a subset of the population groups during the training
phase. We formally analyze how this fairness objective differs from existing
federated learning fairness criteria that impose similar performance across
participants instead of demographic groups. We provide an optimization
algorithm -- FedMinMax -- for solving the proposed problem that provably enjoys
the performance guarantees of centralized learning algorithms. We
experimentally compare the proposed approach against other methods in terms of
group fairness in various federated learning setups.
Related papers
- Fair Federated Learning via Bounded Group Loss [37.72259706322158]
We propose a general framework for provably fair federated learning.
We extend the notion of Bounded Group Loss as a theoretically-grounded approach for group fairness.
We provide convergence guarantees for the method as well as fairness guarantees for the resulting solution.
arXiv Detail & Related papers (2022-03-18T23:11:54Z) - On the Convergence of Clustered Federated Learning [57.934295064030636]
In a federated learning system, the clients, e.g. mobile devices and organization participants, usually have different personal preferences or behavior patterns.
This paper proposes a novel weighted client-based clustered FL algorithm to leverage the client's group and each client in a unified optimization framework.
arXiv Detail & Related papers (2022-02-13T02:39:19Z) - Minimax Demographic Group Fairness in Federated Learning [23.1988909029387]
Federated learning is an increasingly popular paradigm that enables a large number of entities to collaboratively learn better models.
We study minimax group fairness in federated learning scenarios where different participating entities may only have access to a subset of the population groups during the training phase.
We experimentally compare the proposed approach against other state-of-the-art methods in terms of group fairness in various federated learning setups.
arXiv Detail & Related papers (2022-01-20T17:13:54Z) - Fair Group-Shared Representations with Normalizing Flows [68.29997072804537]
We develop a fair representation learning algorithm which is able to map individuals belonging to different groups in a single group.
We show experimentally that our methodology is competitive with other fair representation learning algorithms.
arXiv Detail & Related papers (2022-01-17T10:49:49Z) - Unified Group Fairness on Federated Learning [22.143427873780404]
Federated learning (FL) has emerged as an important machine learning paradigm where a global model is trained based on private data from distributed clients.
Recent researches focus on achieving fairness among clients, but they ignore the fairness towards different groups formed by sensitive attribute(s) (e.g., gender and/or race)
We propose a novel FL algorithm, named Group Distributionally Robust Federated Averaging (G-DRFA), which mitigates the distribution shift across groups with theoretical analysis of convergence rate.
arXiv Detail & Related papers (2021-11-09T08:21:38Z) - FairFed: Enabling Group Fairness in Federated Learning [22.913999279079878]
Federated learning has been viewed as a promising solution for learning machine learning models among multiple parties.
We propose FairFed, a novel algorithm to enhance group fairness via a fairness-aware aggregation method.
Our proposed method outperforms the state-of-the-art fair federated learning frameworks under a high heterogeneous sensitive attribute distribution.
arXiv Detail & Related papers (2021-10-02T17:55:20Z) - MultiFair: Multi-Group Fairness in Machine Learning [52.24956510371455]
We study multi-group fairness in machine learning (MultiFair)
We propose a generic end-to-end algorithmic framework to solve it.
Our proposed framework is generalizable to many different settings.
arXiv Detail & Related papers (2021-05-24T02:30:22Z) - Can Active Learning Preemptively Mitigate Fairness Issues? [66.84854430781097]
dataset bias is one of the prevailing causes of unfairness in machine learning.
We study whether models trained with uncertainty-based ALs are fairer in their decisions with respect to a protected class.
We also explore the interaction of algorithmic fairness methods such as gradient reversal (GRAD) and BALD.
arXiv Detail & Related papers (2021-04-14T14:20:22Z) - Practical One-Shot Federated Learning for Cross-Silo Setting [114.76232507580067]
One-shot federated learning is a promising approach to make federated learning applicable in cross-silo setting.
We propose a practical one-shot federated learning algorithm named FedKT.
By utilizing the knowledge transfer technique, FedKT can be applied to any classification models and can flexibly achieve differential privacy guarantees.
arXiv Detail & Related papers (2020-10-02T14:09:10Z) - Collaborative Fairness in Federated Learning [24.7378023761443]
We propose a novel Collaborative Fair Federated Learning (CFFL) framework for deep learning.
CFFL enforces participants to converge to different models, thus achieving fairness without compromising predictive performance.
Experiments on benchmark datasets demonstrate that CFFL achieves high fairness and delivers comparable accuracy to the Distributed framework.
arXiv Detail & Related papers (2020-08-27T14:39:09Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartite ranking aims to learn a scoring function that ranks positive individuals higher than negative ones from labeled data.
There have been rising concerns on whether the learned scoring function can cause systematic disparity across different protected groups.
We propose a model post-processing framework for balancing them in the bipartite ranking scenario.
arXiv Detail & Related papers (2020-06-15T10:08:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.