Sequence-to-Sequence Lexical Normalization with Multilingual
Transformers
- URL: http://arxiv.org/abs/2110.02869v2
- Date: Thu, 7 Oct 2021 12:39:26 GMT
- Title: Sequence-to-Sequence Lexical Normalization with Multilingual
Transformers
- Authors: Ana-Maria Bucur, Adrian Cosma and Liviu P. Dinu
- Abstract summary: Current benchmark tasks for natural language processing contain text that is qualitatively different from the text used in informal day to day digital communication.
This discrepancy has led to severe performance degradation of state-of-the-art NLP models when fine-tuned on real-world data.
We propose a sentence-level sequence-to-sequence model based on mBART, which frames the problem as a machine translation problem.
- Score: 3.3302293148249125
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current benchmark tasks for natural language processing contain text that is
qualitatively different from the text used in informal day to day digital
communication. This discrepancy has led to severe performance degradation of
state-of-the-art NLP models when fine-tuned on real-world data. One way to
resolve this issue is through lexical normalization, which is the process of
transforming non-standard text, usually from social media, into a more
standardized form. In this work, we propose a sentence-level
sequence-to-sequence model based on mBART, which frames the problem as a
machine translation problem. As the noisy text is a pervasive problem across
languages, not just English, we leverage the multi-lingual pre-training of
mBART to fine-tune it to our data. While current approaches mainly operate at
the word or subword level, we argue that this approach is straightforward from
a technical standpoint and builds upon existing pre-trained transformer
networks. Our results show that while word-level, intrinsic, performance
evaluation is behind other methods, our model improves performance on
extrinsic, downstream tasks through normalization compared to models operating
on raw, unprocessed, social media text.
Related papers
- Plug, Play, and Fuse: Zero-Shot Joint Decoding via Word-Level Re-ranking Across Diverse Vocabularies [12.843274390224853]
Real-world tasks, like multimodal translation, often require a combination of these strengths, such as handling both translation and image processing.
We propose a novel zero-shot ensembling strategy that allows for the integration of different models during the decoding phase without the need for additional training.
Our approach re-ranks beams during decoding by combining scores at the word level, using multimodals to predict when a word is completed.
arXiv Detail & Related papers (2024-08-21T04:20:55Z) - TAMS: Translation-Assisted Morphological Segmentation [3.666125285899499]
We present a sequence-to-sequence model for canonical morpheme segmentation.
Our model outperforms the baseline in a super-low resource setting but yields mixed results on training splits with more data.
While further work is needed to make translations useful in higher-resource settings, our model shows promise in severely resource-constrained settings.
arXiv Detail & Related papers (2024-03-21T21:23:35Z) - Code-Switching Text Generation and Injection in Mandarin-English ASR [57.57570417273262]
We investigate text generation and injection for improving the performance of an industry commonly-used streaming model, Transformer-Transducer (T-T)
We first propose a strategy to generate code-switching text data and then investigate injecting generated text into T-T model explicitly by Text-To-Speech (TTS) conversion or implicitly by tying speech and text latent spaces.
Experimental results on the T-T model trained with a dataset containing 1,800 hours of real Mandarin-English code-switched speech show that our approaches to inject generated code-switching text significantly boost the performance of T-T models.
arXiv Detail & Related papers (2023-03-20T09:13:27Z) - M-Adapter: Modality Adaptation for End-to-End Speech-to-Text Translation [66.92823764664206]
We propose M-Adapter, a novel Transformer-based module, to adapt speech representations to text.
While shrinking the speech sequence, M-Adapter produces features desired for speech-to-text translation.
Our experimental results show that our model outperforms a strong baseline by up to 1 BLEU.
arXiv Detail & Related papers (2022-07-03T04:26:53Z) - Time-Stamped Language Model: Teaching Language Models to Understand the
Flow of Events [8.655294504286635]
We propose to formulate this task as a question answering problem.
This enables us to use pre-trained language models on other QA benchmarks by adapting those to the procedural text understanding.
Our model evaluated on the Propara dataset shows improvements on the published state-of-the-art results with a $3.1%$ increase in F1 score.
arXiv Detail & Related papers (2021-04-15T17:50:41Z) - Neural Inverse Text Normalization [11.240669509034298]
We propose an efficient and robust neural solution for inverse text normalization.
We show that this can be easily extended to other languages without the need for a linguistic expert to manually curate them.
A transformer based model infused with pretraining consistently achieves a lower WER across several datasets.
arXiv Detail & Related papers (2021-02-12T07:53:53Z) - Controlling Hallucinations at Word Level in Data-to-Text Generation [10.59137381324694]
State-of-art neural models include misleading statements in their outputs.
We propose a Multi-Branch Decoder which is able to leverage word-level labels to learn the relevant parts of each training instance.
Our model is able to reduce and control hallucinations, while keeping fluency and coherence in generated texts.
arXiv Detail & Related papers (2021-02-04T18:58:28Z) - GTAE: Graph-Transformer based Auto-Encoders for Linguistic-Constrained
Text Style Transfer [119.70961704127157]
Non-parallel text style transfer has attracted increasing research interests in recent years.
Current approaches still lack the ability to preserve the content and even logic of original sentences.
We propose a method called Graph Transformer based Auto-GTAE, which models a sentence as a linguistic graph and performs feature extraction and style transfer at the graph level.
arXiv Detail & Related papers (2021-02-01T11:08:45Z) - Improving Text Generation with Student-Forcing Optimal Transport [122.11881937642401]
We propose using optimal transport (OT) to match the sequences generated in training and testing modes.
An extension is also proposed to improve the OT learning, based on the structural and contextual information of the text sequences.
The effectiveness of the proposed method is validated on machine translation, text summarization, and text generation tasks.
arXiv Detail & Related papers (2020-10-12T19:42:25Z) - POINTER: Constrained Progressive Text Generation via Insertion-based
Generative Pre-training [93.79766670391618]
We present POINTER, a novel insertion-based approach for hard-constrained text generation.
The proposed method operates by progressively inserting new tokens between existing tokens in a parallel manner.
The resulting coarse-to-fine hierarchy makes the generation process intuitive and interpretable.
arXiv Detail & Related papers (2020-05-01T18:11:54Z) - Multilingual Denoising Pre-training for Neural Machine Translation [132.66750663226287]
mBART is a sequence-to-sequence denoising auto-encoder pre-trained on large-scale monolingual corpora.
mBART is one of the first methods for pre-training a complete sequence-to-sequence model.
arXiv Detail & Related papers (2020-01-22T18:59:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.