Meta-Learning 3D Shape Segmentation Functions
- URL: http://arxiv.org/abs/2110.03854v2
- Date: Tue, 6 Feb 2024 07:40:00 GMT
- Title: Meta-Learning 3D Shape Segmentation Functions
- Authors: Yu Hao, Hao Huang, Shuaihang Yuan, Yi Fang
- Abstract summary: We introduce an auxiliary deep neural network as a meta-learner which takes as input a 3D shape and predicts the prior over the respective 3D segmentation function space.
We show in experiments that our meta-learning approach, denoted as Meta-3DSeg, leads to improvements on unsupervised 3D shape segmentation.
- Score: 16.119694625781992
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning robust 3D shape segmentation functions with deep neural networks has
emerged as a powerful paradigm, offering promising performance in producing a
consistent part segmentation of each 3D shape. Generalizing across 3D shape
segmentation functions requires robust learning of priors over the respective
function space and enables consistent part segmentation of shapes in presence
of significant 3D structure variations. Existing generalization methods rely on
extensive training of 3D shape segmentation functions on large-scale labeled
datasets. In this paper, we proposed to formalize the learning of a 3D shape
segmentation function space as a meta-learning problem, aiming to predict a 3D
segmentation model that can be quickly adapted to new shapes with no or limited
training data. More specifically, we define each task as unsupervised learning
of shape-conditioned 3D segmentation function which takes as input points in 3D
space and predicts the part-segment labels. The 3D segmentation function is
trained by a self-supervised 3D shape reconstruction loss without the need for
part labels. Also, we introduce an auxiliary deep neural network as a
meta-learner which takes as input a 3D shape and predicts the prior over the
respective 3D segmentation function space. We show in experiments that our
meta-learning approach, denoted as Meta-3DSeg, leads to improvements on
unsupervised 3D shape segmentation over the conventional designs of deep neural
networks for 3D shape segmentation functions.
Related papers
- Segment3D: Learning Fine-Grained Class-Agnostic 3D Segmentation without
Manual Labels [141.23836433191624]
Current 3D scene segmentation methods are heavily dependent on manually annotated 3D training datasets.
We propose Segment3D, a method for class-agnostic 3D scene segmentation that produces high-quality 3D segmentation masks.
arXiv Detail & Related papers (2023-12-28T18:57:11Z) - MvDeCor: Multi-view Dense Correspondence Learning for Fine-grained 3D
Segmentation [91.6658845016214]
We propose to utilize self-supervised techniques in the 2D domain for fine-grained 3D shape segmentation tasks.
We render a 3D shape from multiple views, and set up a dense correspondence learning task within the contrastive learning framework.
As a result, the learned 2D representations are view-invariant and geometrically consistent.
arXiv Detail & Related papers (2022-08-18T00:48:15Z) - Semi-supervised 3D shape segmentation with multilevel consistency and
part substitution [21.075426681857024]
We propose an effective semi-supervised method for learning 3D segmentations from a few labeled 3D shapes and a large amount of unlabeled 3D data.
For the unlabeled data, we present a novel multilevel consistency loss to enforce consistency of network predictions between perturbed copies of a 3D shape.
For the labeled data, we develop a simple yet effective part substitution scheme to augment the labeled 3D shapes with more structural variations to enhance training.
arXiv Detail & Related papers (2022-04-19T11:48:24Z) - 3D Shape Reconstruction from 2D Images with Disentangled Attribute Flow [61.62796058294777]
Reconstructing 3D shape from a single 2D image is a challenging task.
Most of the previous methods still struggle to extract semantic attributes for 3D reconstruction task.
We propose 3DAttriFlow to disentangle and extract semantic attributes through different semantic levels in the input images.
arXiv Detail & Related papers (2022-03-29T02:03:31Z) - iSeg3D: An Interactive 3D Shape Segmentation Tool [48.784624011210475]
We propose an effective annotation tool, named iSeg for 3D shape.
Under our observation, most objects can be considered as the composition of finite primitive shapes.
We train iSeg3D model on our built primitive-composed shape data to learn the geometric prior knowledge in a self-supervised manner.
arXiv Detail & Related papers (2021-12-24T08:15:52Z) - Spatial Context-Aware Self-Attention Model For Multi-Organ Segmentation [18.76436457395804]
Multi-organ segmentation is one of most successful applications of deep learning in medical image analysis.
Deep convolutional neural nets (CNNs) have shown great promise in achieving clinically applicable image segmentation performance on CT or MRI images.
We propose a new framework for combining 3D and 2D models, in which the segmentation is realized through high-resolution 2D convolutions.
arXiv Detail & Related papers (2020-12-16T21:39:53Z) - SeqXY2SeqZ: Structure Learning for 3D Shapes by Sequentially Predicting
1D Occupancy Segments From 2D Coordinates [61.04823927283092]
We propose to represent 3D shapes using 2D functions, where the output of the function at each 2D location is a sequence of line segments inside the shape.
We implement this approach using a Seq2Seq model with attention, called SeqXY2SeqZ, which learns the mapping from a sequence of 2D coordinates along two arbitrary axes to a sequence of 1D locations along the third axis.
Our experiments show that SeqXY2SeqZ outperforms the state-ofthe-art methods under widely used benchmarks.
arXiv Detail & Related papers (2020-03-12T00:24:36Z) - Implicit Functions in Feature Space for 3D Shape Reconstruction and
Completion [53.885984328273686]
Implicit Feature Networks (IF-Nets) deliver continuous outputs, can handle multiple topologies, and complete shapes for missing or sparse input data.
IF-Nets clearly outperform prior work in 3D object reconstruction in ShapeNet, and obtain significantly more accurate 3D human reconstructions.
arXiv Detail & Related papers (2020-03-03T11:14:29Z) - 3D Shape Segmentation with Geometric Deep Learning [2.512827436728378]
We propose a neural-network based approach that produces 3D augmented views of the 3D shape to solve the whole segmentation as sub-segmentation problems.
We validate our approach using 3D shapes of publicly available datasets and of real objects that are reconstructed using photogrammetry techniques.
arXiv Detail & Related papers (2020-02-02T14:11:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.