WKB approach to the gravity-matter dynamics: a cosmological
implementation
- URL: http://arxiv.org/abs/2110.04617v1
- Date: Sat, 9 Oct 2021 17:32:39 GMT
- Title: WKB approach to the gravity-matter dynamics: a cosmological
implementation
- Authors: Giulia Maniccia, Giovanni Montani
- Abstract summary: We propose a different model for the quantization of the gravity-matter system.
The time parameter is defined via an additional term, i.e. the kinematical action, which acts as a clock for quantum matter.
It is shown with a WKB expansion that quantum gravity corrections to the matter dynamics arise at the next order of expansion, and such contributions are unitary.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The problem of time emerging in the canonical quantization procedure of
gravity signals a necessity to properly define a relational time parameter.
Previous approaches, which are here briefly discussed, make use of the
dependence of the quantum system on semiclassical gravitational variables in
order to define time. We show that such paths, despite the following studies,
lead to a non-unitary evolution. We propose a different model for the
quantization of the gravity-matter system, where the time parameter is defined
via an additional term, i.e. the kinematical action, which acts as a clock for
quantum matter. The procedure here used implements a Born-Oppenheimer-like
separation of the system, which maintains covariance under the foliation of the
gravitational background and keeps the correct classical limit of standard
quantum field theory on a fixed background. It is shown with a WKB expansion
that quantum gravity corrections to the matter dynamics arise at the next order
of expansion, and such contributions are unitary, signalling a striking
difference from previous proposals. Applications to a cosmological model are
presented and the analogies of the kinematical term with an incoherent dust are
briefly discussed.
Related papers
- Relaxation of first-class constraints and the quantization of gauge theories: from "matter without matter" to the reappearance of time in quantum gravity [72.27323884094953]
We make a conceptual overview of an approach to the initial-value problem in canonical gauge theories.
We stress how the first-class phase-space constraints may be relaxed if we interpret them as fixing the values of new degrees of freedom.
arXiv Detail & Related papers (2024-02-19T19:00:02Z) - A magnetic clock for a harmonic oscillator [89.99666725996975]
We study how the quantum dynamics transforms into a classical-like behaviour when conditions related with macroscopicity are met by the clock alone.
In the description of this emerging behaviour finds its place the classical notion of time, as well as that of phase-space and trajectories on it.
arXiv Detail & Related papers (2023-10-20T09:55:51Z) - Emergent geometric phase in time-dependent noncommutative quantum system [0.0]
We have given a systematic way to formulate non-relativistic quantum mechanics on 1+1 dimensional NC space-time.
Although the effect of noncommutativity of space-time should presumably become significant at a very high energy scale, it is intriguing to speculate that there should be some relics of the effects of quantum space-time even in a low-energy regime.
arXiv Detail & Related papers (2023-06-14T12:29:08Z) - Beyond semiclassical time: dynamics in quantum cosmology [0.0]
We review two approaches to the definition of the Hilbert space and evolution in mechanical theories with local time-reparametrization invariance.
We discuss in which sense both approaches exhibit an inner product that is gauge-fixed via an operator version of the usual Faddeev-Popov procedure.
We note that a conditional probability interpretation of the physical states is possible, so that both formalisms are examples of quantum mechanics with a relational dynamics.
arXiv Detail & Related papers (2023-02-15T19:00:09Z) - Quantum dynamics corresponding to chaotic BKL scenario [62.997667081978825]
Quantization smears the gravitational singularity avoiding its localization in the configuration space.
Results suggest that the generic singularity of general relativity can be avoided at quantum level.
arXiv Detail & Related papers (2022-04-24T13:32:45Z) - Quantum reference frames for an indefinite metric [0.0]
We propose a strategy to determine the dynamics of objects in the presence of mass gravitating in superposition, and hence an indefinite spacetime metric.
We show that, as long as the mass configurations in the different branches are related via relative-distance-preserving transformations, one can use an extension of the current framework of QRFs to change to a frame in which the mass configuration becomes definite.
We apply this procedure to find the motion of a probe particle and the behavior of clocks near the mass configuration, and thus find the time dilation caused by a gravitating object in superposition.
arXiv Detail & Related papers (2021-12-21T19:00:04Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Time and Evolution in Quantum and Classical Cosmology [68.8204255655161]
We show that it is neither necessary nor sufficient for the Poisson bracket between the time variable and the super-Hamiltonian to be equal to unity in all of the phase space.
We also discuss the question of switching between different internal times as well as the Montevideo interpretation of quantum theory.
arXiv Detail & Related papers (2021-07-02T09:17:55Z) - On the Problem of Time(s) in Quantum Mechanics and Quantum Gravity:
recent integrating developments and outlook [0.0]
How to restore time is the Problem of Time(s)
It introduces an intrinsic time property tau associated with the mass of the system.
It invalidates Pauli's objection to the existence of a time operator.
arXiv Detail & Related papers (2021-04-20T17:51:05Z) - Spacetime Quantum Actions [0.0]
We propose a formulation of quantum mechanics in an extended Fock space in which a tensor product structure is applied to time.
Subspaces of histories consistent with the dynamics of a particular theory are defined by a direct quantum generalization of the corresponding classical action.
The diagonalization of such quantum actions enables us to recover the predictions of conventional quantum mechanics and reveals an extended unitary equivalence between all physical theories.
arXiv Detail & Related papers (2020-10-18T23:14:10Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.