Haar Wavelet Feature Compression for Quantized Graph Convolutional
Networks
- URL: http://arxiv.org/abs/2110.04824v1
- Date: Sun, 10 Oct 2021 15:25:37 GMT
- Title: Haar Wavelet Feature Compression for Quantized Graph Convolutional
Networks
- Authors: Moshe Eliasof, Benjamin Bodner, Eran Treister
- Abstract summary: Graph Convolutional Networks (GCNs) are widely used in a variety of applications, and can be seen as an unstructured version of standard Convolutional Neural Networks (CNNs)
As in CNNs, the computational cost of GCNs for large input graphs can be high and inhibit the use of these networks, especially in environments with low computational resources.
We propose to utilize Haar wavelet compression and light quantization to reduce the computations and the bandwidth involved with the network.
- Score: 7.734726150561088
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Convolutional Networks (GCNs) are widely used in a variety of
applications, and can be seen as an unstructured version of standard
Convolutional Neural Networks (CNNs). As in CNNs, the computational cost of
GCNs for large input graphs (such as large point clouds or meshes) can be high
and inhibit the use of these networks, especially in environments with low
computational resources. To ease these costs, quantization can be applied to
GCNs. However, aggressive quantization of the feature maps can lead to a
significant degradation in performance. On a different note, Haar wavelet
transforms are known to be one of the most effective and efficient approaches
to compress signals. Therefore, instead of applying aggressive quantization to
feature maps, we propose to utilize Haar wavelet compression and light
quantization to reduce the computations and the bandwidth involved with the
network. We demonstrate that this approach surpasses aggressive feature
quantization by a significant margin, for a variety of problems ranging from
node classification to point cloud classification and part and semantic
segmentation.
Related papers
- Binary Graph Convolutional Network with Capacity Exploration [58.99478502486377]
We propose a Binary Graph Convolutional Network (Bi-GCN), which binarizes both the network parameters and input node attributes.
Our Bi-GCN can reduce the memory consumption by an average of 31x for both the network parameters and input data, and accelerate the inference speed by an average of 51x.
arXiv Detail & Related papers (2022-10-24T12:05:17Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
Modelling long-range dependencies is critical for scene understanding tasks in computer vision.
A fully-connected graph is beneficial for such modelling, but its computational overhead is prohibitive.
We propose a dynamic graph message passing network, that significantly reduces the computational complexity.
arXiv Detail & Related papers (2022-09-20T14:41:37Z) - CoNLoCNN: Exploiting Correlation and Non-Uniform Quantization for
Energy-Efficient Low-precision Deep Convolutional Neural Networks [13.520972975766313]
We propose a framework to enable energy-efficient low-precision deep convolutional neural network inference by exploiting non-uniform quantization of weights.
We also propose a novel data representation format, Encoded Low-Precision Binary Signed Digit, to compress the bit-width of weights.
arXiv Detail & Related papers (2022-07-31T01:34:56Z) - Rewiring Networks for Graph Neural Network Training Using Discrete
Geometry [0.0]
Information over-squashing is a problem that significantly impacts the training of graph neural networks (GNNs)
In this paper, we investigate the use of discrete analogues of classical geometric notions of curvature to model information flow on networks and rewire them.
We show that these classical notions achieve state-of-the-art performance in GNN training accuracy on a variety of real-world network datasets.
arXiv Detail & Related papers (2022-07-16T21:50:39Z) - Spectral Graph Convolutional Networks With Lifting-based Adaptive Graph
Wavelets [81.63035727821145]
Spectral graph convolutional networks (SGCNs) have been attracting increasing attention in graph representation learning.
We propose a novel class of spectral graph convolutional networks that implement graph convolutions with adaptive graph wavelets.
arXiv Detail & Related papers (2021-08-03T17:57:53Z) - MWQ: Multiscale Wavelet Quantized Neural Networks [45.22093693422084]
We propose a novel multiscale wavelet quantization (MWQ) method inspired by the characteristics of images in the frequency domain.
It exploits the multiscale frequency and spatial information to alleviate the information loss caused by quantization in the spatial domain.
Because of the flexibility of MWQ, we demonstrate three applications on the ImageNet and COCO datasets.
arXiv Detail & Related papers (2021-03-09T11:21:59Z) - ItNet: iterative neural networks with small graphs for accurate and
efficient anytime prediction [1.52292571922932]
In this study, we introduce a class of network models that have a small memory footprint in terms of their computational graphs.
We show state-of-the-art results for semantic segmentation on the CamVid and Cityscapes datasets.
arXiv Detail & Related papers (2021-01-21T15:56:29Z) - Spatio-Temporal Inception Graph Convolutional Networks for
Skeleton-Based Action Recognition [126.51241919472356]
We design a simple and highly modularized graph convolutional network architecture for skeleton-based action recognition.
Our network is constructed by repeating a building block that aggregates multi-granularity information from both the spatial and temporal paths.
arXiv Detail & Related papers (2020-11-26T14:43:04Z) - Dynamic Graph: Learning Instance-aware Connectivity for Neural Networks [78.65792427542672]
Dynamic Graph Network (DG-Net) is a complete directed acyclic graph, where the nodes represent convolutional blocks and the edges represent connection paths.
Instead of using the same path of the network, DG-Net aggregates features dynamically in each node, which allows the network to have more representation ability.
arXiv Detail & Related papers (2020-10-02T16:50:26Z) - Graph Highway Networks [77.38665506495553]
Graph Convolution Networks (GCN) are widely used in learning graph representations due to their effectiveness and efficiency.
They suffer from the notorious over-smoothing problem, in which the learned representations converge to alike vectors when many layers are stacked.
We propose Graph Highway Networks (GHNet) which utilize gating units to balance the trade-off between homogeneity and heterogeneity in the GCN learning process.
arXiv Detail & Related papers (2020-04-09T16:26:43Z) - Scattering GCN: Overcoming Oversmoothness in Graph Convolutional
Networks [0.0]
Graph convolutional networks (GCNs) have shown promising results in processing graph data by extracting structure-aware features.
Here, we propose to augment conventional GCNs with geometric scattering transforms and residual convolutions.
The former enables band-pass filtering of graph signals, thus alleviating the so-called oversmoothing often encountered in GCNs.
arXiv Detail & Related papers (2020-03-18T18:03:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.