Non-perturbative Quantum Propagators in Bounded Spaces
- URL: http://arxiv.org/abs/2110.04969v1
- Date: Mon, 11 Oct 2021 02:47:26 GMT
- Title: Non-perturbative Quantum Propagators in Bounded Spaces
- Authors: James P. Edwards and V\'ictor A. Gonz\'alez-Dom\'inguez and Idrish
Huet and Mar\'ia Anabel Trejo
- Abstract summary: A generalised hit function is defined as a many-point propagator.
We show how it can be used to calculate the Feynman propagator.
We conjecture a general analytical formula for the propagator when Dirichlet boundary conditions are present in a given geometry.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We outline a new approach to calculating the quantum mechanical propagator in
the presence of geometrically non-trivial Dirichlet boundary conditions based
upon a generalisation of an integral transform of the propagator studied in
previous work (the so-called ``hit function''), and a convergent sequence of
Pad\'e approximants. In this paper the generalised hit function is defined as a
many-point propagator and we describe its relation to the sum over trajectories
in the Feynman path integral. We then show how it can be used to calculate the
Feynman propagator. We calculate analytically all such hit functions in $D=1$
and $D=3$ dimensions, giving recursion relations between them in the same or
different dimensions and apply the results to the simple cases of propagation
in the presence of perfectly conducting planar and spherical plates. We use
these results to conjecture a general analytical formula for the propagator
when Dirichlet boundary conditions are present in a given geometry, also
explaining how it can be extended for application for more general,
non-localised potentials. Our work has resonance with previous results obtained
by Grosche in the study of path integrals in the presence of delta potentials.
We indicate the eventual application in a relativistic context to determining
Casimir energies using this technique.
Related papers
- von Mises Quasi-Processes for Bayesian Circular Regression [57.88921637944379]
We explore a family of expressive and interpretable distributions over circle-valued random functions.
The resulting probability model has connections with continuous spin models in statistical physics.
For posterior inference, we introduce a new Stratonovich-like augmentation that lends itself to fast Markov Chain Monte Carlo sampling.
arXiv Detail & Related papers (2024-06-19T01:57:21Z) - Curvature of Gaussian quantum states [0.0]
The space of quantum states can be endowed with a metric structure using the second order derivatives of the relative entropy, giving rise to the so-called Kubo-Mori-Bogoliubov inner product.
arXiv Detail & Related papers (2024-04-15T09:14:10Z) - Topological Effects With Inverse Quadratic Yukawa Plus Inverse Square
Potential on Eigenvalue Solutions [0.0]
We study the non-relativistic Schrodinger wave equation under the influence of quantum flux field.
We show that the energy eigenvalues are shifted by the topological defects of a point-like global monopole.
arXiv Detail & Related papers (2023-04-25T13:14:36Z) - The Half Transform Ansatz: Quarkonium Dynamics in Quantum Phase Space [0.0]
We present a method to cast the Schrodinger Equation into a hyper-geometric form which can be solved for the phase space wave function and its energy eigenvalues.
We also analyze the behavior of these wave functions, which suggest a correlation between radial momentum and the upper limit of existence in charm-anticharm mesons.
arXiv Detail & Related papers (2023-03-28T23:38:57Z) - Scaling of fronts and entanglement spreading during a domain wall
melting [0.0]
We revisit the out-of-equilibrium physics arising during the unitary evolution of a one-dimensional XXZ spin chain.
In the last part of the work, we include large-scale quantum fluctuations on top of the semi-classical hydrodynamic background.
arXiv Detail & Related papers (2023-03-17T15:34:43Z) - Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - q-Paths: Generalizing the Geometric Annealing Path using Power Means [51.73925445218366]
We introduce $q$-paths, a family of paths which includes the geometric and arithmetic mixtures as special cases.
We show that small deviations away from the geometric path yield empirical gains for Bayesian inference.
arXiv Detail & Related papers (2021-07-01T21:09:06Z) - Alternative quantisation condition for wavepacket dynamics in a
hyperbolic double well [0.0]
We propose an analytical approach for computing the eigenspectrum and corresponding eigenstates of a hyperbolic double well potential of arbitrary height or width.
Considering initial wave packets of different widths and peak locations, we compute autocorrelation functions and quasiprobability distributions.
arXiv Detail & Related papers (2020-09-18T10:29:04Z) - Models of zero-range interaction for the bosonic trimer at unitarity [91.3755431537592]
We present the construction of quantum Hamiltonians for a three-body system consisting of identical bosons mutually coupled by a two-body interaction of zero range.
For a large part of the presentation, infinite scattering length will be considered.
arXiv Detail & Related papers (2020-06-03T17:54:43Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
We propose a novel approach for scaling GP regression with derivatives based on quadrature Fourier features.
We prove deterministic, non-asymptotic and exponentially fast decaying error bounds which apply for both the approximated kernel as well as the approximated posterior.
arXiv Detail & Related papers (2020-03-05T14:33:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.