Path-optimized nonadiabatic geometric quantum computation on
superconducting qubits
- URL: http://arxiv.org/abs/2110.06074v2
- Date: Thu, 4 Nov 2021 00:40:46 GMT
- Title: Path-optimized nonadiabatic geometric quantum computation on
superconducting qubits
- Authors: Cheng-Yun Ding, Li-Na Ji, Tao Chen, and Zheng-Yuan Xue
- Abstract summary: We propose a path-optimized scheme for geometric quantum computation on superconducting transmon qubits.
We find that the constructed geometric gates can be superior to their corresponding dynamical ones under different local errors.
Our scheme provides a new perspective for geometric quantum computation, making it more promising in the application of large-scale fault-tolerant quantum computation.
- Score: 3.98625523260655
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computation based on nonadiabatic geometric phases has attracted a
broad range of interests, due to its fast manipulation and inherent noise
resistance. However, it is limited to some special evolution paths, and the
gate-times are typically longer than conventional dynamical gates, resulting in
weakening of robustness and more infidelities of the implemented geometric
gates. Here, we propose a path-optimized scheme for geometric quantum
computation on superconducting transmon qubits, where high-fidelity and robust
universal nonadiabatic geometric gates can be implemented, based on
conventional experimental setups. Specifically, we find that, by selecting
appropriate evolution paths, the constructed geometric gates can be superior to
their corresponding dynamical ones under different local errors. Numerical
simulations show that the fidelities for single-qubit geometric Phase, $\pi/8$
and Hadamard gates can be obtained as $99.93\%$, $99.95\%$ and $99.95\%$,
respectively. Remarkably, the fidelity for two-qubit control-phase gate can be
as high as $99.87\%$. Therefore, our scheme provides a new perspective for
geometric quantum computation, making it more promising in the application of
large-scale fault-tolerant quantum computation.
Related papers
- Nonadiabatic geometric quantum gates with on-demand trajectories [2.5539863252714636]
We propose a general protocol for constructing geometric quantum gates with on-demand trajectories.
Our scheme adopts reverse engineering of the target Hamiltonian using smooth pulses.
Because a particular geometric gate can be induced by various different trajectories, we can further optimize the gate performance.
arXiv Detail & Related papers (2024-01-20T06:57:36Z) - State-independent geometric quantum gates via nonadiabatic and noncyclic
evolution [10.356589142632922]
We propose a scheme for universal quantum gates with pure nonadiabatic and noncyclic geometric phases from smooth evolution paths.
We show that the implemented geometric gates have stronger robustness than dynamical gates and the geometric scheme with cyclic path.
These high-trivial quantum gates are promising for large-scale fault-tolerant quantum computation.
arXiv Detail & Related papers (2023-09-04T02:55:58Z) - Quantum Gate Generation in Two-Level Open Quantum Systems by Coherent
and Incoherent Photons Found with Gradient Search [77.34726150561087]
We consider an environment formed by incoherent photons as a resource for controlling open quantum systems via an incoherent control.
We exploit a coherent control in the Hamiltonian and an incoherent control in the dissipator which induces the time-dependent decoherence rates.
arXiv Detail & Related papers (2023-02-28T07:36:02Z) - Gaussian initializations help deep variational quantum circuits escape
from the barren plateau [87.04438831673063]
Variational quantum circuits have been widely employed in quantum simulation and quantum machine learning in recent years.
However, quantum circuits with random structures have poor trainability due to the exponentially vanishing gradient with respect to the circuit depth and the qubit number.
This result leads to a general belief that deep quantum circuits will not be feasible for practical tasks.
arXiv Detail & Related papers (2022-03-17T15:06:40Z) - Nonadiabatic geometric quantum computation with shortened path on
superconducting circuits [3.0726135239588164]
We present an effective scheme to find the shortest geometric path under the conventional conditions of geometric quantum computation.
High-fidelity and robust geometric gates can be realized by only single-loop evolution.
Our scheme is promising for large-scale fault-tolerant quantum computation.
arXiv Detail & Related papers (2021-11-02T08:03:38Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Quantum control landscape for ultrafast generation of single-qubit phase
shift quantum gates [68.8204255655161]
We consider the problem of ultrafast controlled generation of single-qubit phase shift quantum gates.
Globally optimal control is a control which realizes the gate with maximal possible fidelity.
Trap is a control which is optimal only locally but not globally.
arXiv Detail & Related papers (2021-04-26T16:38:43Z) - Nonadiabatic geometric quantum gates that are insensitive to
qubit-frequency drifts [8.750801670077806]
In the current implementation of nonadiabatic geometric phases, operational and/or random errors tend to destruct the conditions that induce geometric phases.
Here, we apply the path-design strategy to explain in detail why both configurations can realize universal quantum gates in a single-loop way.
Our scheme provides a promising way towards practical realization of high-fidelity and robust nonadiabatic geometric quantum gates.
arXiv Detail & Related papers (2021-03-16T12:05:45Z) - High-fidelity geometric quantum gates with short paths on
superconducting circuits [5.666193021459319]
We propose a scheme to realize nonadiabatic geometric quantum gates with short paths based on simple pulse control techniques.
Specifically, we illustrate the idea on a superconducting quantum circuit, which is one of the most promising platforms for realizing practical quantum computer.
arXiv Detail & Related papers (2021-02-06T10:13:05Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z) - Simulating nonnative cubic interactions on noisy quantum machines [65.38483184536494]
We show that quantum processors can be programmed to efficiently simulate dynamics that are not native to the hardware.
On noisy devices without error correction, we show that simulation results are significantly improved when the quantum program is compiled using modular gates.
arXiv Detail & Related papers (2020-04-15T05:16:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.