ABO: Dataset and Benchmarks for Real-World 3D Object Understanding
- URL: http://arxiv.org/abs/2110.06199v1
- Date: Tue, 12 Oct 2021 17:52:42 GMT
- Title: ABO: Dataset and Benchmarks for Real-World 3D Object Understanding
- Authors: Jasmine Collins, Shubham Goel, Achleshwar Luthra, Leon Xu, Kenan Deng,
Xi Zhang, Tomas F. Yago Vicente, Himanshu Arora, Thomas Dideriksen, Matthieu
Guillaumin, Jitendra Malik
- Abstract summary: Amazon-Berkeley Objects (ABO) is a large-scale dataset of product images and 3D models corresponding to real household objects.
We use ABO to measure the domain gap for single-view 3D reconstruction networks trained on synthetic objects.
We also use multi-view images from ABO to measure the robustness of state-of-the-art metric learning approaches to different camera viewpoints.
- Score: 43.42504014918771
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce Amazon-Berkeley Objects (ABO), a new large-scale dataset of
product images and 3D models corresponding to real household objects. We use
this realistic, object-centric 3D dataset to measure the domain gap for
single-view 3D reconstruction networks trained on synthetic objects. We also
use multi-view images from ABO to measure the robustness of state-of-the-art
metric learning approaches to different camera viewpoints. Finally, leveraging
the physically-based rendering materials in ABO, we perform single- and
multi-view material estimation for a variety of complex, real-world geometries.
The full dataset is available for download at
https://amazon-berkeley-objects.s3.amazonaws.com/index.html.
Related papers
- Category-level Object Detection, Pose Estimation and Reconstruction from Stereo Images [15.921719523588996]
Existing monocular and RGB-D methods suffer from scale ambiguity due to missing or depth measurements.
We present CODERS, a one-stage approach for Category-level Object Detection, pose Estimation and Reconstruction from Stereo images.
Our dataset, code, and demos will be available on our project page.
arXiv Detail & Related papers (2024-07-09T15:59:03Z) - AutoDecoding Latent 3D Diffusion Models [95.7279510847827]
We present a novel approach to the generation of static and articulated 3D assets that has a 3D autodecoder at its core.
The 3D autodecoder framework embeds properties learned from the target dataset in the latent space.
We then identify the appropriate intermediate volumetric latent space, and introduce robust normalization and de-normalization operations.
arXiv Detail & Related papers (2023-07-07T17:59:14Z) - UniG3D: A Unified 3D Object Generation Dataset [75.49544172927749]
UniG3D is a unified 3D object generation dataset constructed by employing a universal data transformation pipeline on ShapeNet datasets.
This pipeline converts each raw 3D model into comprehensive multi-modal data representation.
The selection of data sources for our dataset is based on their scale and quality.
arXiv Detail & Related papers (2023-06-19T07:03:45Z) - Anything-3D: Towards Single-view Anything Reconstruction in the Wild [61.090129285205805]
We introduce Anything-3D, a methodical framework that ingeniously combines a series of visual-language models and the Segment-Anything object segmentation model.
Our approach employs a BLIP model to generate textural descriptions, utilize the Segment-Anything model for the effective extraction of objects of interest, and leverages a text-to-image diffusion model to lift object into a neural radiance field.
arXiv Detail & Related papers (2023-04-19T16:39:51Z) - OmniObject3D: Large-Vocabulary 3D Object Dataset for Realistic
Perception, Reconstruction and Generation [107.71752592196138]
We propose OmniObject3D, a large vocabulary 3D object dataset with massive high-quality real-scanned 3D objects.
It comprises 6,000 scanned objects in 190 daily categories, sharing common classes with popular 2D datasets.
Each 3D object is captured with both 2D and 3D sensors, providing textured meshes, point clouds, multiview rendered images, and multiple real-captured videos.
arXiv Detail & Related papers (2023-01-18T18:14:18Z) - HM3D-ABO: A Photo-realistic Dataset for Object-centric Multi-view 3D
Reconstruction [37.29140654256627]
We present a photo-realistic object-centric dataset HM3D-ABO.
It is constructed by composing realistic indoor scene and realistic object.
The dataset could also be useful for tasks such as camera pose estimation and novel-view synthesis.
arXiv Detail & Related papers (2022-06-24T16:02:01Z) - Common Objects in 3D: Large-Scale Learning and Evaluation of Real-life
3D Category Reconstruction [7.013794773659423]
Common Objects in 3D is a large-scale dataset with real multi-view images of object categories annotated with camera poses and ground truth 3D point clouds.
The dataset contains a total of 1.5 million frames from nearly 19,000 videos capturing objects from 50 MS-COCO categories.
We exploit this new dataset to conduct one of the first large-scale "in-the-wild" evaluations of several new-view-synthesis and category-centric 3D reconstruction methods.
arXiv Detail & Related papers (2021-09-01T17:59:05Z) - D3D-HOI: Dynamic 3D Human-Object Interactions from Videos [49.38319295373466]
We introduce D3D-HOI: a dataset of monocular videos with ground truth annotations of 3D object pose, shape and part motion during human-object interactions.
Our dataset consists of several common articulated objects captured from diverse real-world scenes and camera viewpoints.
We leverage the estimated 3D human pose for more accurate inference of the object spatial layout and dynamics.
arXiv Detail & Related papers (2021-08-19T00:49:01Z) - Objectron: A Large Scale Dataset of Object-Centric Videos in the Wild
with Pose Annotations [0.0]
We introduce the Objectron dataset to advance the state of the art in 3D object detection.
The dataset contains object-centric short videos with pose annotations for nine categories and includes 4 million annotated images in 14,819 annotated videos.
arXiv Detail & Related papers (2020-12-18T00:34:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.