Detecting Slag Formations with Deep Convolutional Neural Networks
- URL: http://arxiv.org/abs/2110.06640v1
- Date: Wed, 13 Oct 2021 11:13:48 GMT
- Title: Detecting Slag Formations with Deep Convolutional Neural Networks
- Authors: Christian von Koch, William Anz\'en, Max Fischer, Raazesh Sainudiin
- Abstract summary: We investigate the ability to detect slag formations in images from inside a Grate-Kiln system furnace with two deep convolutional neural networks.
The conditions inside the furnace cause occasional obstructions of the camera view.
Our approach suggests dealing with this problem by introducing a convLSTM-layer in the deep convolutional neural network.
- Score: 0.38233569758620056
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the ability to detect slag formations in images from inside a
Grate-Kiln system furnace with two deep convolutional neural networks. The
conditions inside the furnace cause occasional obstructions of the camera view.
Our approach suggests dealing with this problem by introducing a convLSTM-layer
in the deep convolutional neural network. The results show that it is possible
to achieve sufficient performance to automate the decision of timely
countermeasures in the industrial operational setting. Furthermore, the
addition of the convLSTM-layer results in fewer outlying predictions and a
lower running variance of the fraction of detected slag in the image time
series.
Related papers
- Opening the Black Box: predicting the trainability of deep neural networks with reconstruction entropy [0.0]
We present a method for predicting the trainable regime in parameter space for deep feedforward neural networks (DNNs)
We show that a single epoch of training is sufficient to predict the trainability of the deep feedforward network on a range of datasets.
arXiv Detail & Related papers (2024-06-13T18:00:05Z) - Deep Multi-Threshold Spiking-UNet for Image Processing [51.88730892920031]
This paper introduces the novel concept of Spiking-UNet for image processing, which combines the power of Spiking Neural Networks (SNNs) with the U-Net architecture.
To achieve an efficient Spiking-UNet, we face two primary challenges: ensuring high-fidelity information propagation through the network via spikes and formulating an effective training strategy.
Experimental results show that, on image segmentation and denoising, our Spiking-UNet achieves comparable performance to its non-spiking counterpart.
arXiv Detail & Related papers (2023-07-20T16:00:19Z) - Hoyer regularizer is all you need for ultra low-latency spiking neural
networks [4.243356707599485]
Spiking Neural networks (SNN) have emerged as an attractive Hoyer-temporal computing paradigm for a wide range of low-power vision tasks.
We present a training framework (from scratch) for one-time SNNs that uses a novel variant of the recently proposed regularizer.
Our approach outperforms existing spiking, binary, and adder neural networks in terms of the accuracy-FLOPs trade-off for complex image recognition tasks.
arXiv Detail & Related papers (2022-12-20T11:16:06Z) - Neural Clamping: Joint Input Perturbation and Temperature Scaling for Neural Network Calibration [62.4971588282174]
We propose a new post-processing calibration method called Neural Clamping.
Our empirical results show that Neural Clamping significantly outperforms state-of-the-art post-processing calibration methods.
arXiv Detail & Related papers (2022-09-23T14:18:39Z) - Model2Detector:Widening the Information Bottleneck for
Out-of-Distribution Detection using a Handful of Gradient Steps [12.263417500077383]
Out-of-distribution detection is an important capability that has long eluded vanilla neural networks.
Recent advances in inference-time out-of-distribution detection help mitigate some of these problems.
We show how our method consistently outperforms the state-of-the-art in detection accuracy on popular image datasets.
arXiv Detail & Related papers (2022-02-22T23:03:40Z) - Adversarial Examples Detection with Bayesian Neural Network [57.185482121807716]
We propose a new framework to detect adversarial examples motivated by the observations that random components can improve the smoothness of predictors.
We propose a novel Bayesian adversarial example detector, short for BATer, to improve the performance of adversarial example detection.
arXiv Detail & Related papers (2021-05-18T15:51:24Z) - Forensicability of Deep Neural Network Inference Pipelines [68.8204255655161]
We propose methods to infer properties of the execution environment of machine learning pipelines by tracing characteristic numerical deviations in observable outputs.
Results from a series of proof-of-concept experiments give rise to possible forensic applications, such as the identification of the hardware platform used to produce deep neural network predictions.
arXiv Detail & Related papers (2021-02-01T15:41:49Z) - DAQ: Distribution-Aware Quantization for Deep Image Super-Resolution
Networks [49.191062785007006]
Quantizing deep convolutional neural networks for image super-resolution substantially reduces their computational costs.
Existing works either suffer from a severe performance drop in ultra-low precision of 4 or lower bit-widths, or require a heavy fine-tuning process to recover the performance.
We propose a novel distribution-aware quantization scheme (DAQ) which facilitates accurate training-free quantization in ultra-low precision.
arXiv Detail & Related papers (2020-12-21T10:19:42Z) - Deep Networks for Direction-of-Arrival Estimation in Low SNR [89.45026632977456]
We introduce a Convolutional Neural Network (CNN) that is trained from mutli-channel data of the true array manifold matrix.
We train a CNN in the low-SNR regime to predict DoAs across all SNRs.
Our robust solution can be applied in several fields, ranging from wireless array sensors to acoustic microphones or sonars.
arXiv Detail & Related papers (2020-11-17T12:52:18Z) - A Light-Weighted Convolutional Neural Network for Bitemporal SAR Image
Change Detection [40.58864817923371]
We propose a lightweight neural network to reduce the computational and spatial complexity.
In the proposed network, we replace normal convolutional layers with bottleneck layers that keep the same number of channels between input and output.
We verify our light-weighted neural network on four sets of bitemporal SAR images.
arXiv Detail & Related papers (2020-05-29T04:01:32Z) - A Novel Visual Fault Detection and Classification System for Semiconductor Manufacturing Using Stacked Hybrid Convolutional Neural Networks [0.24999074238880484]
Automated visual inspection in the semiconductor industry aims to detect and classify manufacturing defects.
This contribution introduces a novel deep neural network based hybrid approach.
Consisting of stacked hybrid convolutional neural networks (SH-CNN) and inspired by current approaches of visual attention, the realized system draws the focus over the level of detail from its structures.
arXiv Detail & Related papers (2019-11-25T21:58:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.