Collaborative Semantic Aggregation and Calibration for Federated Domain
Generalization
- URL: http://arxiv.org/abs/2110.06736v4
- Date: Thu, 25 May 2023 08:34:15 GMT
- Title: Collaborative Semantic Aggregation and Calibration for Federated Domain
Generalization
- Authors: Junkun Yuan, Xu Ma, Defang Chen, Fei Wu, Lanfen Lin, Kun Kuang
- Abstract summary: DG aims to learn from multiple known source domains a model that can generalize well to unknown target domains.
In this paper, we tackle the problem of federated domain generalization where the source datasets can only be accessed locally.
We conduct data-free semantic aggregation by fusing the models trained on separated domains layer-by-layer.
- Score: 28.573872986524794
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Domain generalization (DG) aims to learn from multiple known source domains a
model that can generalize well to unknown target domains. The existing DG
methods usually exploit the fusion of shared multi-source data to train a
generalizable model. However, tremendous data is distributed across lots of
places nowadays that can not be shared due to privacy policies. In this paper,
we tackle the problem of federated domain generalization where the source
datasets can only be accessed and learned locally for privacy protection. We
propose a novel framework called Collaborative Semantic Aggregation and
Calibration (CSAC) to enable this challenging problem. To fully absorb
multi-source semantic information while avoiding unsafe data fusion, we conduct
data-free semantic aggregation by fusing the models trained on the separated
domains layer-by-layer. To address the semantic dislocation problem caused by
domain shift, we further design cross-layer semantic calibration with an
attention mechanism to align each semantic level and enhance domain invariance.
We unify multi-source semantic learning and alignment in a collaborative way by
repeating the semantic aggregation and calibration alternately, keeping each
dataset localized, and the data privacy is carefully protected. Extensive
experiments show the significant performance of our method in addressing this
challenging problem.
Related papers
- Reducing Source-Private Bias in Extreme Universal Domain Adaptation [11.875619863954238]
Universal Domain Adaptation (UniDA) aims to transfer knowledge from a labeled source domain to an unlabeled target domain.
We show that state-of-the-art methods struggle when the source domain has significantly more non-overlapping classes than overlapping ones.
We propose using self-supervised learning to preserve the structure of the target data.
arXiv Detail & Related papers (2024-10-15T04:51:37Z) - Generalizable Heterogeneous Federated Cross-Correlation and Instance
Similarity Learning [60.058083574671834]
This paper presents a novel FCCL+, federated correlation and similarity learning with non-target distillation.
For heterogeneous issue, we leverage irrelevant unlabeled public data for communication.
For catastrophic forgetting in local updating stage, FCCL+ introduces Federated Non Target Distillation.
arXiv Detail & Related papers (2023-09-28T09:32:27Z) - Single-domain Generalization in Medical Image Segmentation via Test-time
Adaptation from Shape Dictionary [64.5632303184502]
Domain generalization typically requires data from multiple source domains for model learning.
This paper studies the important yet challenging single domain generalization problem, in which a model is learned under the worst-case scenario with only one source domain to directly generalize to different unseen target domains.
We present a novel approach to address this problem in medical image segmentation, which extracts and integrates the semantic shape prior information of segmentation that are invariant across domains.
arXiv Detail & Related papers (2022-06-29T08:46:27Z) - Compound Domain Generalization via Meta-Knowledge Encoding [55.22920476224671]
We introduce Style-induced Domain-specific Normalization (SDNorm) to re-normalize the multi-modal underlying distributions.
We harness the prototype representations, the centroids of classes, to perform relational modeling in the embedding space.
Experiments on four standard Domain Generalization benchmarks reveal that COMEN exceeds the state-of-the-art performance without the need of domain supervision.
arXiv Detail & Related papers (2022-03-24T11:54:59Z) - Towards Data-Free Domain Generalization [12.269045654957765]
How can knowledge contained in models trained on different source data domains be merged into a single model that generalizes well to unseen target domains?
Prior domain generalization methods typically rely on using source domain data, making them unsuitable for private decentralized data.
We propose DEKAN, an approach that extracts and fuses domain-specific knowledge from the available teacher models into a student model robust to domain shift.
arXiv Detail & Related papers (2021-10-09T11:44:05Z) - Generalizable Person Re-identification with Relevance-aware Mixture of
Experts [45.13716166680772]
We propose a novel method called the relevance-aware mixture of experts (RaMoE)
RaMoE uses an effective voting-based mixture mechanism to dynamically leverage source domains' diverse characteristics to improve the model's generalization.
Considering the target domains' invisibility during training, we propose a novel learning-to-learn algorithm combined with our relation alignment loss to update the voting network.
arXiv Detail & Related papers (2021-05-19T14:19:34Z) - Inferring Latent Domains for Unsupervised Deep Domain Adaptation [54.963823285456925]
Unsupervised Domain Adaptation (UDA) refers to the problem of learning a model in a target domain where labeled data are not available.
This paper introduces a novel deep architecture which addresses the problem of UDA by automatically discovering latent domains in visual datasets.
We evaluate our approach on publicly available benchmarks, showing that it outperforms state-of-the-art domain adaptation methods.
arXiv Detail & Related papers (2021-03-25T14:33:33Z) - Learning to Combine: Knowledge Aggregation for Multi-Source Domain
Adaptation [56.694330303488435]
We propose a Learning to Combine for Multi-Source Domain Adaptation (LtC-MSDA) framework.
In the nutshell, a knowledge graph is constructed on the prototypes of various domains to realize the information propagation among semantically adjacent representations.
Our approach outperforms existing methods with a remarkable margin.
arXiv Detail & Related papers (2020-07-17T07:52:44Z) - Alleviating Semantic-level Shift: A Semi-supervised Domain Adaptation
Method for Semantic Segmentation [97.8552697905657]
A key challenge of this task is how to alleviate the data distribution discrepancy between the source and target domains.
We propose Alleviating Semantic-level Shift (ASS), which can successfully promote the distribution consistency from both global and local views.
We apply our ASS to two domain adaptation tasks, from GTA5 to Cityscapes and from Synthia to Cityscapes.
arXiv Detail & Related papers (2020-04-02T03:25:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.