Optical-Flow-Reuse-Based Bidirectional Recurrent Network for Space-Time
Video Super-Resolution
- URL: http://arxiv.org/abs/2110.06786v1
- Date: Wed, 13 Oct 2021 15:21:30 GMT
- Title: Optical-Flow-Reuse-Based Bidirectional Recurrent Network for Space-Time
Video Super-Resolution
- Authors: Yuantong Zhang, Huairui Wang, Zhenzhong Chen
- Abstract summary: Space-time video super-resolution (ST-VSR) simultaneously increases the spatial resolution and frame rate for a given video.
Existing methods typically suffer from difficulties in how to efficiently leverage information from a large range of neighboring frames.
We propose a coarse-to-fine bidirectional recurrent neural network instead of using ConvLSTM to leverage knowledge between adjacent frames.
- Score: 52.899234731501075
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we consider the task of space-time video super-resolution
(ST-VSR), which simultaneously increases the spatial resolution and frame rate
for a given video. However, existing methods typically suffer from difficulties
in how to efficiently leverage information from a large range of neighboring
frames or avoiding the speed degradation in the inference using deformable
ConvLSTM strategies for alignment. % Some recent LSTM-based ST-VSR methods have
achieved promising results. To solve the above problem of the existing methods,
we propose a coarse-to-fine bidirectional recurrent neural network instead of
using ConvLSTM to leverage knowledge between adjacent frames. Specifically, we
first use bi-directional optical flow to update the hidden state and then
employ a Feature Refinement Module (FRM) to refine the result. Since we could
fully utilize a large range of neighboring frames, our method leverages local
and global information more effectively. In addition, we propose an optical
flow-reuse strategy that can reuse the intermediate flow of adjacent frames,
which considerably reduces the computation burden of frame alignment compared
with existing LSTM-based designs. Extensive experiments demonstrate that our
optical-flow-reuse-based bidirectional recurrent network(OFR-BRN) is superior
to the state-of-the-art methods both in terms of accuracy and efficiency.
Related papers
- StreamFlow: Streamlined Multi-Frame Optical Flow Estimation for Video
Sequences [31.210626775505407]
Occlusions between consecutive frames have long posed a significant challenge in optical flow estimation.
We present a Streamlined In-batch Multi-frame (SIM) pipeline tailored to video input, attaining a similar level of time efficiency to two-frame networks.
StreamFlow not only excels in terms of performance on challenging KITTI and Sintel datasets, with particular improvement in occluded areas.
arXiv Detail & Related papers (2023-11-28T07:53:51Z) - Continuous Space-Time Video Super-Resolution Utilizing Long-Range
Temporal Information [48.20843501171717]
We propose a continuous ST-VSR (CSTVSR) method that can convert the given video to any frame rate and spatial resolution.
We show that the proposed algorithm has good flexibility and achieves better performance on various datasets.
arXiv Detail & Related papers (2023-02-26T08:02:39Z) - STDAN: Deformable Attention Network for Space-Time Video
Super-Resolution [39.18399652834573]
We propose a deformable attention network called STDAN for STVSR.
First, we devise a long-short term feature (LSTFI) module, which is capable of abundant content from more neighboring input frames.
Second, we put forward a spatial-temporal deformable feature aggregation (STDFA) module, in which spatial and temporal contexts are adaptively captured and aggregated.
arXiv Detail & Related papers (2022-03-14T03:40:35Z) - TimeLens: Event-based Video Frame Interpolation [54.28139783383213]
We introduce Time Lens, a novel indicates equal contribution method that leverages the advantages of both synthesis-based and flow-based approaches.
We show an up to 5.21 dB improvement in terms of PSNR over state-of-the-art frame-based and event-based methods.
arXiv Detail & Related papers (2021-06-14T10:33:47Z) - Group-based Bi-Directional Recurrent Wavelet Neural Networks for Video
Super-Resolution [4.9136996406481135]
Video super-resolution (VSR) aims to estimate a high-resolution (HR) frame from a low-resolution (LR) frames.
Key challenge for VSR lies in the effective exploitation of spatial correlation in an intra-frame and temporal dependency between consecutive frames.
arXiv Detail & Related papers (2021-06-14T06:36:13Z) - Efficient Two-Stream Network for Violence Detection Using Separable
Convolutional LSTM [0.0]
We propose an efficient two-stream deep learning architecture leveraging Separable Convolutional LSTM (SepConvLSTM) and pre-trained MobileNet.
SepConvLSTM is constructed by replacing convolution operation at each gate of ConvLSTM with a depthwise separable convolution.
Our model outperforms the accuracy on the larger and more challenging RWF-2000 dataset by more than a 2% margin.
arXiv Detail & Related papers (2021-02-21T12:01:48Z) - MuCAN: Multi-Correspondence Aggregation Network for Video
Super-Resolution [63.02785017714131]
Video super-resolution (VSR) aims to utilize multiple low-resolution frames to generate a high-resolution prediction for each frame.
Inter- and intra-frames are the key sources for exploiting temporal and spatial information.
We build an effective multi-correspondence aggregation network (MuCAN) for VSR.
arXiv Detail & Related papers (2020-07-23T05:41:27Z) - Zooming Slow-Mo: Fast and Accurate One-Stage Space-Time Video
Super-Resolution [95.26202278535543]
A simple solution is to split it into two sub-tasks: video frame (VFI) and video super-resolution (VSR)
temporalsynthesis and spatial super-resolution are intra-related in this task.
We propose a one-stage space-time video super-resolution framework, which directly synthesizes an HR slow-motion video from an LFR, LR video.
arXiv Detail & Related papers (2020-02-26T16:59:48Z) - Video Face Super-Resolution with Motion-Adaptive Feedback Cell [90.73821618795512]
Video super-resolution (VSR) methods have recently achieved a remarkable success due to the development of deep convolutional neural networks (CNN)
In this paper, we propose a Motion-Adaptive Feedback Cell (MAFC), a simple but effective block, which can efficiently capture the motion compensation and feed it back to the network in an adaptive way.
arXiv Detail & Related papers (2020-02-15T13:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.