Learning a Compressive Sensing Matrix with Structural Constraints via
Maximum Mean Discrepancy Optimization
- URL: http://arxiv.org/abs/2110.07221v1
- Date: Thu, 14 Oct 2021 08:35:54 GMT
- Title: Learning a Compressive Sensing Matrix with Structural Constraints via
Maximum Mean Discrepancy Optimization
- Authors: Michael Koller and Wolfgang Utschick
- Abstract summary: We introduce a learning-based algorithm to obtain a measurement matrix for compressive sensing related recovery problems.
Recent success of such metrics in neural network related topics motivate a solution of the problem based on machine learning.
- Score: 17.104994036477308
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a learning-based algorithm to obtain a measurement matrix for
compressive sensing related recovery problems. The focus lies on matrices with
a constant modulus constraint which typically represent a network of analog
phase shifters in hybrid precoding/combining architectures. We interpret a
matrix with restricted isometry property as a mapping of points from a high- to
a low-dimensional hypersphere. We argue that points on the low-dimensional
hypersphere, namely, in the range of the matrix, should be uniformly
distributed to increase robustness against measurement noise. This notion is
formalized in an optimization problem which uses one of the maximum mean
discrepancy metrics in the objective function. Recent success of such metrics
in neural network related topics motivate a solution of the problem based on
machine learning. Numerical experiments show better performance than random
measurement matrices that are generally employed in compressive sensing
contexts. Further, we adapt a method from the literature to the constant
modulus constraint. This method can also compete with random matrices and it is
shown to harmonize well with the proposed learning-based approach if it is used
as an initialization. Lastly, we describe how other structural matrix
constraints, e.g., a Toeplitz constraint, can be taken into account, too.
Related papers
- The Decimation Scheme for Symmetric Matrix Factorization [0.0]
Matrix factorization is an inference problem that has acquired importance due to its vast range of applications.
We study this extensive rank problem, extending the alternative 'decimation' procedure that we recently introduced.
We introduce a simple algorithm based on a ground state search that implements decimation and performs matrix factorization.
arXiv Detail & Related papers (2023-07-31T10:53:45Z) - Simplifying Momentum-based Positive-definite Submanifold Optimization
with Applications to Deep Learning [24.97120654216651]
We show how to solve difficult differential equations with momentum on a submanifold.
We do so by proposing a generalized version of the Riemannian normal coordinates.
We use our approach to simplify existing approaches for structured covariances and develop matrix-inverse-free $2textnd$orders for deep learning with low precision by using only matrix multiplications.
arXiv Detail & Related papers (2023-02-20T03:31:11Z) - A Novel Maximum-Entropy-Driven Technique for Low-Rank Orthogonal
Nonnegative Matrix Factorization with $\ell_0$-Norm sparsity Constraint [0.0]
In data-driven control and machine learning, a common requirement involves breaking down large matrices into smaller, low-rank factors.
This paper introduces an innovative solution to the orthogonal nonnegative matrix factorization (ONMF) problem.
The proposed method achieves comparable or improved reconstruction errors in line with the literature.
arXiv Detail & Related papers (2022-10-06T04:30:59Z) - Semi-Supervised Subspace Clustering via Tensor Low-Rank Representation [64.49871502193477]
We propose a novel semi-supervised subspace clustering method, which is able to simultaneously augment the initial supervisory information and construct a discriminative affinity matrix.
Comprehensive experimental results on six commonly-used benchmark datasets demonstrate the superiority of our method over state-of-the-art methods.
arXiv Detail & Related papers (2022-05-21T01:47:17Z) - Matrix Completion via Non-Convex Relaxation and Adaptive Correlation
Learning [90.8576971748142]
We develop a novel surrogate that can be optimized by closed-form solutions.
We exploit upperwise correlation for completion, and thus an adaptive correlation learning model.
arXiv Detail & Related papers (2022-03-04T08:50:50Z) - Solving weakly supervised regression problem using low-rank manifold
regularization [77.34726150561087]
We solve a weakly supervised regression problem.
Under "weakly" we understand that for some training points the labels are known, for some unknown, and for others uncertain due to the presence of random noise or other reasons such as lack of resources.
In the numerical section, we applied the suggested method to artificial and real datasets using Monte-Carlo modeling.
arXiv Detail & Related papers (2021-04-13T23:21:01Z) - Adversarially-Trained Nonnegative Matrix Factorization [77.34726150561087]
We consider an adversarially-trained version of the nonnegative matrix factorization.
In our formulation, an attacker adds an arbitrary matrix of bounded norm to the given data matrix.
We design efficient algorithms inspired by adversarial training to optimize for dictionary and coefficient matrices.
arXiv Detail & Related papers (2021-04-10T13:13:17Z) - Eigendecomposition-Free Training of Deep Networks for Linear
Least-Square Problems [107.3868459697569]
We introduce an eigendecomposition-free approach to training a deep network.
We show that our approach is much more robust than explicit differentiation of the eigendecomposition.
Our method has better convergence properties and yields state-of-the-art results.
arXiv Detail & Related papers (2020-04-15T04:29:34Z) - Multi-Objective Matrix Normalization for Fine-grained Visual Recognition [153.49014114484424]
Bilinear pooling achieves great success in fine-grained visual recognition (FGVC)
Recent methods have shown that the matrix power normalization can stabilize the second-order information in bilinear features.
We propose an efficient Multi-Objective Matrix Normalization (MOMN) method that can simultaneously normalize a bilinear representation.
arXiv Detail & Related papers (2020-03-30T08:40:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.