Joint 3D Human Shape Recovery from A Single Imag with Bilayer-Graph
- URL: http://arxiv.org/abs/2110.08472v1
- Date: Sat, 16 Oct 2021 05:04:02 GMT
- Title: Joint 3D Human Shape Recovery from A Single Imag with Bilayer-Graph
- Authors: Xin Yu, Jeroen van Baar, Siheng Chen
- Abstract summary: We propose a dual-scale graph approach to estimate the 3D human shape and pose from images.
We use a coarse graph, derived from a dense graph, to estimate the human's 3D pose, and the dense graph to estimate the 3D shape.
We train our model end-to-end and show that we can achieve state-of-the-art results for several evaluation datasets.
- Score: 35.375489948345404
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ability to estimate the 3D human shape and pose from images can be useful
in many contexts. Recent approaches have explored using graph convolutional
networks and achieved promising results. The fact that the 3D shape is
represented by a mesh, an undirected graph, makes graph convolutional networks
a natural fit for this problem. However, graph convolutional networks have
limited representation power. Information from nodes in the graph is passed to
connected neighbors, and propagation of information requires successive graph
convolutions. To overcome this limitation, we propose a dual-scale graph
approach. We use a coarse graph, derived from a dense graph, to estimate the
human's 3D pose, and the dense graph to estimate the 3D shape. Information in
coarse graphs can be propagated over longer distances compared to dense graphs.
In addition, information about pose can guide to recover local shape detail and
vice versa. We recognize that the connection between coarse and dense is itself
a graph, and introduce graph fusion blocks to exchange information between
graphs with different scales. We train our model end-to-end and show that we
can achieve state-of-the-art results for several evaluation datasets.
Related papers
- InstructG2I: Synthesizing Images from Multimodal Attributed Graphs [50.852150521561676]
We propose a graph context-conditioned diffusion model called InstructG2I.
InstructG2I first exploits the graph structure and multimodal information to conduct informative neighbor sampling.
A Graph-QFormer encoder adaptively encodes the graph nodes into an auxiliary set of graph prompts to guide the denoising process.
arXiv Detail & Related papers (2024-10-09T17:56:15Z) - Structure-free Graph Condensation: From Large-scale Graphs to Condensed
Graph-free Data [91.27527985415007]
Existing graph condensation methods rely on the joint optimization of nodes and structures in the condensed graph.
We advocate a new Structure-Free Graph Condensation paradigm, named SFGC, to distill a large-scale graph into a small-scale graph node set.
arXiv Detail & Related papers (2023-06-05T07:53:52Z) - SynGraphy: Succinct Summarisation of Large Networks via Small Synthetic
Representative Graphs [4.550112751061436]
We describe SynGraphy, a method for visually summarising the structure of large network datasets.
It works by drawing smaller graphs generated to have similar structural properties to the input graphs.
arXiv Detail & Related papers (2023-02-15T16:00:15Z) - Graph Generation with Diffusion Mixture [57.78958552860948]
Generation of graphs is a major challenge for real-world tasks that require understanding the complex nature of their non-Euclidean structures.
We propose a generative framework that models the topology of graphs by explicitly learning the final graph structures of the diffusion process.
arXiv Detail & Related papers (2023-02-07T17:07:46Z) - Scaling R-GCN Training with Graph Summarization [71.06855946732296]
Training of Relation Graph Convolutional Networks (R-GCN) does not scale well with the size of the graph.
In this work, we experiment with the use of graph summarization techniques to compress the graph.
We obtain reasonable results on the AIFB, MUTAG and AM datasets.
arXiv Detail & Related papers (2022-03-05T00:28:43Z) - Hierarchical Graph Networks for 3D Human Pose Estimation [50.600944798627786]
Recent 2D-to-3D human pose estimation works tend to utilize the graph structure formed by the topology of the human skeleton.
We argue that this skeletal topology is too sparse to reflect the body structure and suffer from serious 2D-to-3D ambiguity problem.
We propose a novel graph convolution network architecture, Hierarchical Graph Networks, to overcome these weaknesses.
arXiv Detail & Related papers (2021-11-23T15:09:03Z) - Inference Attacks Against Graph Neural Networks [33.19531086886817]
Graph embedding is a powerful tool to solve the graph analytics problem.
While sharing graph embedding is intriguing, the associated privacy risks are unexplored.
We systematically investigate the information leakage of the graph embedding by mounting three inference attacks.
arXiv Detail & Related papers (2021-10-06T10:08:11Z) - Some Algorithms on Exact, Approximate and Error-Tolerant Graph Matching [3.655021726150369]
We present an extensive survey of various exact and inexact graph matching techniques.
A category of graph matching algorithms is presented, which reduces the graph size by removing the less important nodes.
We introduce a novel approach to measure graph similarity using geometric graphs.
arXiv Detail & Related papers (2020-12-30T18:51:06Z) - Multilevel Graph Matching Networks for Deep Graph Similarity Learning [79.3213351477689]
We propose a multi-level graph matching network (MGMN) framework for computing the graph similarity between any pair of graph-structured objects.
To compensate for the lack of standard benchmark datasets, we have created and collected a set of datasets for both the graph-graph classification and graph-graph regression tasks.
Comprehensive experiments demonstrate that MGMN consistently outperforms state-of-the-art baseline models on both the graph-graph classification and graph-graph regression tasks.
arXiv Detail & Related papers (2020-07-08T19:48:19Z) - Distance-Geometric Graph Convolutional Network (DG-GCN) for
Three-Dimensional (3D) Graphs [0.8722210937404288]
We propose a message-passing graph convolutional network based on the distance-geometric graph representation: DG-GCN.
It enables learning of filter weights from distances, thereby incorporating the geometry of 3D graphs in graph convolutions.
Our work demonstrates the utility and value of DG-GCN for end-to-end deep learning on 3D graphs, particularly molecular graphs.
arXiv Detail & Related papers (2020-07-06T15:20:52Z) - Geometric Graph Representations and Geometric Graph Convolutions for
Deep Learning on Three-Dimensional (3D) Graphs [0.8722210937404288]
The geometry of three-dimensional (3D) graphs, consisting of nodes and edges, plays a crucial role in many important applications.
We define three types of geometric graph representations: positional, angle-geometric and distance-geometric.
For proof of concept, we use the distance-geometric graph representation for geometric graph convolutions.
The results of geometric graph convolutions, for the ESOL and Freesol datasets, show significant improvement over those of standard graph convolutions.
arXiv Detail & Related papers (2020-06-02T17:08:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.